已知:如圖,在△ABC中,AB=AC,AE是角平分線(xiàn),BM平分∠ABC交AE于點(diǎn)M,經(jīng)過(guò)B,M兩點(diǎn)的⊙O交BC于點(diǎn)G,交AB于點(diǎn)精英家教網(wǎng)F,F(xiàn)B恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當(dāng)BC=4,AC=6,求⊙O的半徑.
分析:(1)連接OM,可得∠OMB=∠OBM=∠MBE,根據(jù)∠OMB+∠BME=∠MBE+∠BME=90°即可證明;
(2)由△AOM∽△ABE,根據(jù)相似三角形對(duì)應(yīng)邊成比例即可求解.
解答:精英家教網(wǎng)(1)證明:連接OM,
則∠OMB=∠OBM=∠MBE
又∵AB=AC,AE是角平分線(xiàn),
∴AE⊥BC,
∴∠OMB+∠BME=∠MBE+∠BME=90°,∴∠AMO=90°,
∴AE與⊙O相切.

(2)解:由AE與⊙O相切,AE⊥BC
∴OM∥BC
∴△AOM∽△ABE
OM
BE
=
AO
AB

∵BC=4
∴BE=2,AB=6,
r
2
=
6-r
6
,r=
3
2
點(diǎn)評(píng):本題考查了相似三角形的判定與性質(zhì),屬于基礎(chǔ)題,關(guān)鍵是作出輔助線(xiàn)進(jìn)行證明.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線(xiàn)AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過(guò)A,D兩點(diǎn)作⊙O(不寫(xiě)作法,保留作圖痕跡),再判斷直線(xiàn)BC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,半徑為2,AB=6,求線(xiàn)段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號(hào)和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線(xiàn)DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線(xiàn)DE;
(2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:專(zhuān)項(xiàng)題 題型:證明題

已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊(cè)答案