如圖14,已知半徑為1的軸交于兩點(diǎn),的切線,切點(diǎn)為,圓心的坐標(biāo)為,二次函數(shù)的圖象經(jīng)過(guò)兩點(diǎn).

(1)求二次函數(shù)的解析式;

(2)求切線的函數(shù)解析式;

(3)線段上是否存在一點(diǎn),使得以為頂點(diǎn)的三角形與相似.若存在,請(qǐng)求出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

解:(1)圓心的坐標(biāo)為,半徑為1,,……1分

二次函數(shù)的圖象經(jīng)過(guò)點(diǎn),

可得方程組················································································ 2分

解得:二次函數(shù)解析式為············································· 3分

(2)過(guò)點(diǎn)軸,垂足為.······························································· 4分

的切線,為切點(diǎn),(圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑).

中,

為銳角,···························· 5分

,

中,

點(diǎn)坐標(biāo)為························································································· 6分

設(shè)切線的函數(shù)解析式為,由題意可知,······ 7分

切線的函數(shù)解析式為···································································· 8分

(3)存在.············································································································ 9分

①過(guò)點(diǎn)軸,與交于點(diǎn).可得(兩角對(duì)應(yīng)相等兩三角形相似)

,··········································· 10分

②過(guò)點(diǎn),垂足為,過(guò)點(diǎn)作,垂足為

可得(兩角對(duì)應(yīng)相等兩三角開相似)

中,,

中,

,······································ 11分

符合條件的點(diǎn)坐標(biāo)有······················································ 12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

蘭州市城市規(guī)劃期間,欲拆除黃河岸邊的一根電線桿AB(如圖),已知距電線桿AB水平距離14米處是河岸,即BD=14米,該河岸的坡面CD的坡角∠CDF的正切值為2,岸高CF為2米,在坡頂C處測(cè)得桿頂A的仰角為30°,D、E之間是寬2米的人行道,請(qǐng)你通過(guò)計(jì)算說(shuō)明在拆除電線桿AB時(shí),為確保安精英家教網(wǎng)全,是否將此人行道封上?(在地面上以點(diǎn)B為圓心,以AB長(zhǎng)為半徑的圓形區(qū)域?yàn)槲kU(xiǎn)區(qū)域)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

城市規(guī)劃期間,欲拆除一電線桿AB(如圖),已知與電線桿AB水平距離14米的D處有一等腰梯形大壩CDEF,該梯形的上底CF長(zhǎng)為3米,下底DE長(zhǎng)為5米,∠CDE=60°,在壩頂C處測(cè)得桿頂A的仰角為30°,D、G之間是寬3米的人行道.試問(wèn):在拆除電線桿AB時(shí),為確保行人安全,是否需要將此人行道封閉?請(qǐng)說(shuō)明理由.(在地面上,以點(diǎn)B為圓心,以AB長(zhǎng)為半徑的圓形區(qū)域?yàn)槲kU(xiǎn)區(qū)域)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年山東省臨沂市中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

蘭州市城市規(guī)劃期間,欲拆除黃河岸邊的一根電線桿AB(如圖),已知距電線桿AB水平距離14米處是河岸,即BD=14米,該河岸的坡面CD的坡角∠CDF的正切值為2,岸高CF為2米,在坡頂C處測(cè)得桿頂A的仰角為30°,D、E之間是寬2米的人行道,請(qǐng)你通過(guò)計(jì)算說(shuō)明在拆除電線桿AB時(shí),為確保安全,是否將此人行道封上?(在地面上以點(diǎn)B為圓心,以AB長(zhǎng)為半徑的圓形區(qū)域?yàn)槲kU(xiǎn)區(qū)域)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年甘肅省蘭州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•蘭州)蘭州市城市規(guī)劃期間,欲拆除黃河岸邊的一根電線桿AB(如圖),已知距電線桿AB水平距離14米處是河岸,即BD=14米,該河岸的坡面CD的坡角∠CDF的正切值為2,岸高CF為2米,在坡頂C處測(cè)得桿頂A的仰角為30°,D、E之間是寬2米的人行道,請(qǐng)你通過(guò)計(jì)算說(shuō)明在拆除電線桿AB時(shí),為確保安全,是否將此人行道封上?(在地面上以點(diǎn)B為圓心,以AB長(zhǎng)為半徑的圓形區(qū)域?yàn)槲kU(xiǎn)區(qū)域)

查看答案和解析>>

同步練習(xí)冊(cè)答案