某商場(chǎng)將每件進(jìn)價(jià)為200元的某種商品原來(lái)按每件250元出售,一月可售出100件,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每增加10元,其銷(xiāo)量可減少5件.
(1)求銷(xiāo)售量y(件)與售價(jià)x(元)之間的函數(shù)關(guān)系;
(2)問(wèn)售價(jià)定為多少時(shí),可以獲得最大利潤(rùn),最大利潤(rùn)是多少?
(3)某部門(mén)規(guī)定該商品售價(jià)不得高于300元,該商場(chǎng)能否到達(dá)每月獲得利潤(rùn)不低于7000元的目的.
【答案】分析:(1)利用單價(jià)每增加10元,其銷(xiāo)量可減少5件,得出y與x之間的函數(shù)關(guān)系即可;
(2)利用總利潤(rùn)=每件商品的利潤(rùn)×銷(xiāo)量進(jìn)而利用配方法求出即可;
(3)令W=7000元,則W=-(x-325)2+=7000求出x的值,進(jìn)而與300比較得出即可.
解答:解:(1)∵某種商品原來(lái)按每件250元出售,一月可售出100件,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每增加10元,其銷(xiāo)量可減少5件,
∴銷(xiāo)售量y(件)與售價(jià)x(元)之間的函數(shù)關(guān)系為:
y=100-×5=-+225;

(2)設(shè)利潤(rùn)為W,則
W=(-+225)(x-200)
=-(x-325)2+,
當(dāng)x=125時(shí),W最大=元;

(3)令W=7000元,則W=-(x-325)2+=7000,
解得:x=325±5,
∵x=325-5<300,
∴該商品售價(jià)不得高于300元,該商場(chǎng)能到達(dá)每月獲得利潤(rùn)不低于7000元的目的.
點(diǎn)評(píng):此題主要考查了一元二次方程的應(yīng)用以及二次函數(shù)的應(yīng)用和二次函數(shù)最值求法等知識(shí),求二次函數(shù)最值是中考中的重點(diǎn),同學(xué)們應(yīng)熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、某商場(chǎng)將每件進(jìn)價(jià)為80元的某種商品原來(lái)按每件100元出售,每天可售出100件,為了擴(kuò)大銷(xiāo)售,增加盈利,盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品售價(jià)每降低1元,商場(chǎng)銷(xiāo)量平均每天可增加10件.
(1)假設(shè)銷(xiāo)售單價(jià)降低x元,那么銷(xiāo)售每件這種商品所獲得的利潤(rùn)是
(20-x)
元;這種商品每天的銷(xiāo)售量是
(100+10x)
件(用含x的代數(shù)式表示);
(2)若商場(chǎng)經(jīng)營(yíng)該商品一天要獲利潤(rùn)2160元,則每件商品應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)將每件進(jìn)價(jià)為60元的某種商品原來(lái)按每件100元出售,一天可售出100件.后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低1元,其銷(xiāo)量可增加20件.
(1)求商場(chǎng)經(jīng)營(yíng)該商品原來(lái)一天可獲利潤(rùn)多少元?
(2)設(shè)后來(lái)該商品每件降價(jià)x元,商場(chǎng)一天可獲利潤(rùn)y元.
①若商場(chǎng)經(jīng)營(yíng)該商品一天要獲利潤(rùn)7000元,則每件商品應(yīng)降價(jià)多少元?
②求出y與x之間的函數(shù)關(guān)系式,并通過(guò)畫(huà)該函數(shù)圖象的草圖,觀察其圖象的變化趨勢(shì),結(jié)合題意寫(xiě)出當(dāng)x取何值時(shí),商場(chǎng)獲利潤(rùn)不少于7000元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)將每件進(jìn)價(jià)為200元的某種商品原來(lái)按每件250元出售,一月可售出100件,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每增加10元,其銷(xiāo)量可減少5件.
(1)求銷(xiāo)售量y(件)與售價(jià)x(元)之間的函數(shù)關(guān)系;
(2)問(wèn)售價(jià)定為多少時(shí),可以獲得最大利潤(rùn),最大利潤(rùn)是多少?
(3)某部門(mén)規(guī)定該商品售價(jià)不得高于300元,該商場(chǎng)能否到達(dá)每月獲得利潤(rùn)不低于7000元的目的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)將每件進(jìn)價(jià)為80元的某種商品原來(lái)按每件100元出售,一天可售出100件,經(jīng)調(diào)查這種商品每降低1元,其銷(xiāo)量可增加10件.
①求商場(chǎng)原來(lái)一天可獲利潤(rùn)多少元?
②設(shè)后來(lái)該商品每件降價(jià)x元,一天可獲利潤(rùn)y元.
1)若經(jīng)營(yíng)該商品一天要獲利2160元,則每件商品應(yīng)降價(jià)多少元?
2)當(dāng)售價(jià)為多少時(shí),獲利最大并求最大值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)將每件進(jìn)價(jià)為60元的商品按100元售出,每天可售20件,為了迎接“國(guó)慶節(jié)”,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,盡快減少庫(kù)存,通過(guò)調(diào)查發(fā)現(xiàn),該商品若單價(jià)每降低4元,其銷(xiāo)量就增加8件.
(1)求商場(chǎng)經(jīng)營(yíng)該商品原來(lái)一天可獲利潤(rùn)多少元;
(2)若商場(chǎng)經(jīng)營(yíng)該商品一天要獲利1200元,則每件商品應(yīng)降價(jià)多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案