精英家教網 > 初中數學 > 題目詳情
我市某鎮(zhèn)的一種特產由于運輸原因,長期只能在當地銷售.當地政府對該特產的銷售投資收益為:每投入x萬元,可獲得利潤P=-
1
100
(x-60)2+41
(萬元).當地政府擬在“十二•五”規(guī)劃中加快開發(fā)該特產的銷售,其規(guī)劃方案為:在規(guī)劃前后對該項目每年最多可投入100萬元的銷售投資,在實施規(guī)劃5年的前兩年中,每年都從100萬元中撥出50萬元用于修建一條公路,兩年修成,通車前該特產只能在當地銷售;公路通車后的3年中,該特產既在本地銷售,也在外地銷售.在外地銷售的投資收益為:每投入x萬元,可獲利潤Q=-
99
100
(100-x)2+
294
5
(100-x)+160
(萬元).
(1)若不進行開發(fā),求5年所獲利潤的最大值是多少?
(2)若按規(guī)劃實施,求5年所獲利潤(扣除修路后)的最大值是多少?
(3)根據(1)、(2),該方案是否具有實施價值?
(1)∵每投入x萬元,可獲得利潤P=-
1
100
(x-60)2+41(萬元),
∴當x=60時,所獲利潤最大,最大值為41萬元,
∴若不進行開發(fā),5年所獲利潤的最大值是:41×5=205(萬元);

(2)前兩年:0≤x≤50,此時因為P隨x的增大而增大,
所以x=50時,P值最大,即這兩年的獲利最大為:2×[-
1
100
(50-60)2+41]=80(萬元),
后三年:設每年獲利y,設當地投資額為a,則外地投資額為100-a,
∴Q=-
99
100
[100-(100-a)]2+
294
5
[100-(100-a)]+160=-
99
100
a2+
294
5
a+160,
∴y=P+Q=[-
1
100
(a-60)2+41]+[-
99
100
a2+
294
5
a+160]=-a2+60a+165=-(a-30)2+1065,
∴當a=30時,y最大且為1065,
∴這三年的獲利最大為1065×3=3195(萬元),
∴5年所獲利潤(扣除修路后)的最大值是:80+3195-50×2=3175(萬元).

(3)有很大的實施價值.
規(guī)劃后5年總利潤為3175萬元,不實施規(guī)劃方案僅為205萬元,故具有很大的實施價值.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,已知以E(3,0)為圓心,以5為半徑的⊙E與x軸交于A,B兩點,與y軸交于C點,拋物線y=ax2+bx+c經過A,B,C三點,頂點為F.
(1)求A,B,C三點的坐標;
(2)求拋物線的解析式及頂點F的坐標;
(3)已知M為拋物線上一動點(不與C點重合),試探究:
①使得以A,B,M為頂點的三角形面積與△ABC的面積相等,求所有符合條件的點M的坐標;
②若探究①中的M點位于第四象限,連接M點與拋物線頂點F,試判斷直線MF與⊙E的位置關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,拋物線y=
8
2
5
x2+bx+c經過點A(
3
2
,0)和點B(1,2
2
),與x軸的另一個交點為C.
(1)求拋物線的函數表達式;
(2)點D在對稱軸的右側,x軸上方的拋物線上,且∠BDA=∠DAC,求點D的坐標;
(3)在(2)的條件下,連接BD,交拋物線對稱軸于點E,連接AE.
①判斷四邊形OAEB的形狀,并說明理由;
②點F是OB的中點,點M是直線BD的一個動點,且點M與點B不重合,當∠BMF=
1
3
∠MFO時,請直接寫出線段BM的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,點A1、A2、A3、…、An在拋物線y=-x2圖象上,點B0、B1、B2、B3、…、Bn在y軸上(點B0與坐標原點O重合),若△A1B0B1、△A2B1B2、…、△AnBn-1Bn都為等腰直角三角形,則A2011B2010的長為(  )
A.2010B.2011C.2010
2
D.2011
2

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在直角坐標平面中,O為坐標原點,二次函數y=x2+bx+c的圖象與y軸的負半軸相交于點C(如圖),點C的坐標為(0,-3),且BO=CO.
(1)求出B點坐標和這個二次函數的解析式;
(2)求△ABC的面積;
(3)若P是拋物線對稱軸上一個動點,求當PA+PC的值最小時P點坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=-x2+mx過點A(4,0),O為坐標原點,Q是拋物線的頂點.
(1)求m的值;
(2)點P是x軸上方拋物線上的一個動點,過P作PH⊥x軸,H為垂足.有一個同學說:“在x軸上方拋物線上的所有點中,拋物線的頂點Q與x軸相距最遠,所以當點P運動至點Q時,折線P-H-O的長度最長”,請你用所學知識判斷:這個同學的說法是否正確.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,根據圖象解答下列問題:
(1)寫出方程ax2+bx+c=0的兩個根;
(2)當x為何值時,y>0;y<0?
(3)寫出y隨x的增大而減小的自變量x的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知二次函數y=-
1
2
(x-
3
2
)2+
25
8
的圖象在坐標原點為O的直角坐標系中,
(1)設這個二次函數的圖象與x軸的交點是A、B(B在點A右邊),與y軸的交點是C,求A、B、C的坐標;
(2)求證:△OAC△OCB.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

拋物線y=2ax2+4ax+a2+2的一部分如圖,那么該拋物線與x軸的另一交點坐標為______.

查看答案和解析>>

同步練習冊答案