已知:拋物線C1經(jīng)過點(diǎn)
、
【小題1】   <1>求拋物線C1的解析式;
【小題2】<2>將拋物線C1向左平移幾個單位長度,可使所得的拋物線C2經(jīng)過坐標(biāo)原點(diǎn),計算并寫出C2  的解析式;
【小題3】<3>把拋物線C1繞點(diǎn)A(-1,O)旋轉(zhuǎn)180o,直接寫出所得拋物線C3頂點(diǎn)D的坐標(biāo).

【小題1】(1)
【小題2】(2)把拋物線向左平移3個單位長度,可使所得拋物線經(jīng)過原點(diǎn)。---3分
拋物線的解析式為:
【小題3】(3)D點(diǎn)坐標(biāo)(-3,4)解析:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(甘肅蘭州卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)

過點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過點(diǎn)A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封

閉曲線稱為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線C2<0)的頂點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;

(3)當(dāng)△BDM為直角三角形時,求的值.

 

查看答案和解析>>

同步練習(xí)冊答案