我們知道,一元二次方程主要有四種解法,分別是:因式分解法、直接開平方法、配方法和公式法.請在以下四個方程中任選一個,并用合適的方法解方程.
①2x2-7x+5=0  ②3x2-12x=0  ③2(x-6)2=72  ④x2-4x=5
請用合適的方法解這個方程.
分析:根一元二次方程的特點,確定合適的解決方法.
解答:解:(以下任答出1個即可)
①2x2一7x+5=0
(2x-5)(x-1)=0
解得:x1=
5
2
,x2=1;

②3x2-12x=0
3x(x-4)=0
解得:x1=0,x2=4;

③2(x-6)2=7
2(x-6)2=36
∴x-6=±6
即x1=12,x2=0;

④x2-4x=5
(x-2)2=9
x-2=±3
x=2±3
即x1=5,x2=-1.
點評:正確解一元二次方程,是初中學習的基本要求,正確選擇正確的方法,是快速解決題目的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•永州)我們知道,一元二次方程x2=-1沒有實數(shù)根,即不存在一個實數(shù)的平方等于-1.若我們規(guī)定一個新數(shù)“i”,使其滿足i2=-1(即方程x2=-1有一個根為i).并且進一步規(guī)定:一切實數(shù)可以與新數(shù)進行四則運算,且原有運算律和運算法則仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i22=(-1)2=1,從而對于任意正整數(shù)n,我們可以得到i4n+1=i4n•i=(i4n•i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值為(  )

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年江蘇省揚州市邗江區(qū)九年級上學期期末考試數(shù)學試卷(解析版) 題型:填空題

我們知道,一元二次方程沒有實數(shù)根,即不存在一個實數(shù)的平方等于.若我們規(guī)定一個新數(shù)“”,使其滿足(即方程有一個根為).并且進一步規(guī)定:一切實數(shù)可以與新數(shù)進行四則運算,且原有運算律和運算法則仍然成立,于是有,從而對于任意正整數(shù),我們可以得到,同理可得,,.那么的值為         .

 

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(湖南永州卷)數(shù)學(解析版) 題型:選擇題

我們知道,一元二次方程x2=﹣1沒有實數(shù)根,即不存在一個實數(shù)的平方等于﹣1.若我們規(guī)定一個新數(shù)“i”,使其滿足i2=﹣1(即方程x2=﹣1有一個根為i).并且進一步規(guī)定:一切實數(shù)可以與新數(shù)進行四則運算,且原有運算律和運算法則仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=(﹣1)•i=﹣i,i4=(i22=(﹣1)2=1,從而對于任意正整數(shù)n,我們可以得到i4n+1=i4n•i=(i4n•i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值為【    】

A.0       B.1       C.﹣1      D.i

 

查看答案和解析>>

科目:初中數(shù)學 來源:2013年湖南省永州市中考數(shù)學試卷(解析版) 題型:選擇題

我們知道,一元二次方程x2=-1沒有實數(shù)根,即不存在一個實數(shù)的平方等于-1.若我們規(guī)定一個新數(shù)“i”,使其滿足i2=-1(即方程x2=-1有一個根為i).并且進一步規(guī)定:一切實數(shù)可以與新數(shù)進行四則運算,且原有運算律和運算法則仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i22=(-1)2=1,從而對于任意正整數(shù)n,我們可以得到i4n+1=i4n•i=(i4n•i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值為( )
A.0
B.1
C.-1
D.i

查看答案和解析>>

同步練習冊答案