【題目】ABC中,∠ACB45°.點(diǎn)D(與點(diǎn)BC不重合)為射線BC上一動點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF

1)如果ABAC.如圖①,且點(diǎn)D在線段BC上運(yùn)動.試判斷線段CFBD之間的位置關(guān)系,并證明你的結(jié)論.

2)如果AB≠AC,如圖②,且點(diǎn)D在線段BC上運(yùn)動.(1)中結(jié)論是否成立,為什么?

3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點(diǎn)P,設(shè)AC4,BC3,CDx,求線段CP的長.(用含x的式子表示)

【答案】(1)CFBD位置關(guān)系是垂直,理由見解析;(2)AB≠AC時,CFBD的結(jié)論成立,理由見解析;(3)見解析

【解析】

(1)由∠ACB=45°,AB=AC,得∠ABD=∠ACB=45°;可得∠BAC=90°,由正方形ADEF,可得∠DAF=90°,AD=AF,∠DAF=∠DAC+∠CAF;∠BAC=∠BAD+∠DAC;得∠CAF=∠BAD.可證△DAB≌△FAC(SAS),得∠ACF=∠ABD=45°,得∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(2)過點(diǎn)A作AG⊥AC交BC于點(diǎn)G,可得出AC=AG,易證:△GAD≌△CAF,所以∠ACF=∠AGD=45°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點(diǎn)P,設(shè)AC=4 ,BC=3,CD=x,求線段CP的長.考慮點(diǎn)D的位置,分兩種情況去解答.①點(diǎn)D在線段BC上運(yùn)動,已知∠BCA=45°,可求出AQ=CQ=4.即DQ=4-x,易證△AQD∽△DCP,再根據(jù)相似三角形的性質(zhì)求解問題.②點(diǎn)D在線段BC延長線上運(yùn)動時,由∠BCA=45°,可求出AQ=CQ=4,則DQ=4+x.過A作AQ⊥BC交CB延長線于點(diǎn)Q,則△AGD∽△ACF,得CF⊥BD,由△AQD∽△DCP,得再根據(jù)相似三角形的性質(zhì)求解問題.

(1)CFBD位置關(guān)系是垂直;

證明如下:

AB=AC,ACB=45°,

∴∠ABC=45°.

由正方形ADEFAD=AF,

∵∠DAF=BAC=90°,

∴∠DAB=FAC,

∴△DAB≌△FAC(SAS),

∴∠ACF=ABD.

∴∠BCF=ACB+ACF=90°.

CFBD.

(2)AB≠AC時,CFBD的結(jié)論成立.

理由是:

過點(diǎn)AGAACBC于點(diǎn)G,

∵∠ACB=45°,

∴∠AGD=45°,

AC=AG,

同理可證:GAD≌△CAF

∴∠ACF=AGD=45°,BCF=ACB+ACF=90°,

CFBD.

(3)過點(diǎn)AAQBCCB的延長線于點(diǎn)Q,

①點(diǎn)D在線段BC上運(yùn)動時,

∵∠BCA=45°,可求出AQ=CQ=4.

DQ=4﹣x,AQD∽△DCP,

,

,

②點(diǎn)D在線段BC延長線上運(yùn)動時,

∵∠BCA=45°,

AQ=CQ=4,

DQ=4+x.

AAQBC,

∴∠Q=FAD=90°,

∵∠C′AF=C′CD=90°,AC′F=CC′D,

∴∠ADQ=AFC′,

AQD∽△AC′F.

CFBD,

∴△AQD∽△DCP,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAC90°EBC的中點(diǎn),ADBCAEDCEFCD于點(diǎn)F.

(1)求證:四邊形AECD是菱形;

(2)AB6BC10,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是矩形,為原點(diǎn),、的坐標(biāo)分別為、是邊上的一個動點(diǎn)(不與,重合),過點(diǎn)的反比例函數(shù)的圖象與邊交于點(diǎn)

當(dāng)時,寫出點(diǎn)、的坐標(biāo);

的值;

是否存在這樣的點(diǎn),使得將沿對折后,點(diǎn)恰好落在上?若存在,求出此時點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某次學(xué)生夏令營活動,有小學(xué)生、初中生、高中生和大學(xué)生參加,共200人,各類學(xué)生人數(shù)比例見扇形統(tǒng)計圖.

(1)參加這次夏令營活動的初中生共有多少人?

(2)活動組織者號召參加這次夏令營活動的所有學(xué)生為貧困學(xué)生捐款.結(jié)果小學(xué)生每人

捐款 5 元,初中生每人捐款 10 元,高中生每人捐款 15 元,大學(xué)生每人捐款 20 元.問平均 每人捐款是多少元?

(3)在(2)的條件下,把每個學(xué)生的捐款數(shù)額(以元為單位)——記錄下來,則在這組數(shù)據(jù)中,眾數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與的圖像交于點(diǎn),與軸和 軸分別交于點(diǎn)和點(diǎn),且點(diǎn)的橫坐標(biāo)為.

(1)的值與的長;

(2)若點(diǎn)為線段上一點(diǎn),且,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=mx+3的圖象經(jīng)過點(diǎn)A(2,6),B(n,-3).求:

(1)m,n的值;

(2)OAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和幾位同學(xué)做手的影子游戲時,發(fā)現(xiàn)對于同一物體,影子的大小與光源到物體的距離有關(guān).因此,他們認(rèn)為:可以借助物體的影子長度計算光源到物體的位置.于是,他們做了以下嘗試.

1)如圖,垂直于地面放置的正方形框架ABCD,邊長AB30cm,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子A′B,D′C的長度和為6cm.那么燈泡離地面的高度為 .

2)不改變中燈泡的高度,將兩個邊長為30cm的正方形框架按圖擺放,請計算此時橫向影子AB,DC的長度和為多少?

3)有n個邊長為a的正方形按圖擺放,測得橫向影子ABDC的長度和為b,求燈泡離地面的距離.(寫出解題過程,結(jié)果用含a,b,n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:RTABCRTDEF中,∠ACB=∠EDF90°,∠DEF45°,EF8cmAC16cm,BC12cm.現(xiàn)將RTABCRTDEF按圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、CE)、F在同一條直線上,并按如下方式運(yùn)動.

運(yùn)動一:如圖2,ABC從圖1的位置出發(fā),以1cm/s的速度沿EF方向向右勻速運(yùn)動,DEAC相交于點(diǎn)Q,當(dāng)點(diǎn)Q與點(diǎn)D重合時暫停運(yùn)動;

運(yùn)動二:在運(yùn)動一的基礎(chǔ)上,如圖3,RTABC繞著點(diǎn)C順時針旋轉(zhuǎn),CADF交于點(diǎn)Q,CBDE交于點(diǎn)P,此時點(diǎn)QDF上勻速運(yùn)動,速度為cm/s,當(dāng)QCDF時暫停旋轉(zhuǎn);

運(yùn)動三:在運(yùn)動二的基礎(chǔ)上,如圖4,RTABC1cm/s的速度沿EF向終點(diǎn)F勻速運(yùn)動,直到點(diǎn)C與點(diǎn)F重合時為止.

設(shè)運(yùn)動時間為ts),中間的暫停不計時,

解答下列問題

1)在RTABC從運(yùn)動一到最后運(yùn)動三結(jié)束時,整個過程共耗時   s;

2)在整個運(yùn)動過程中,設(shè)RTABCRTDEF的重疊部分的面積為Scm2),求St之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;

3)在整個運(yùn)動過程中,是否存在某一時刻,點(diǎn)Q正好在線段AB的中垂線上,若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一輛吊車的實物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動點(diǎn)A離地面BD的高度AH3.4m.當(dāng)起重臂AC長度為9m,張角∠HAC118°時,求操作平臺C離地面的高度(結(jié)果保留小數(shù)點(diǎn)后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)

查看答案和解析>>

同步練習(xí)冊答案