【題目】如圖,在矩形ABCD中,AB=6,AD=8,點(diǎn)E是邊AD上的一個(gè)動(dòng)點(diǎn),把△BAE沿BE折疊,點(diǎn)A落在A′處,如果A′恰在矩形的對(duì)角線上,則AE的長(zhǎng)為_____.
【答案】3或.
【解析】
由勾股定理求得BD,當(dāng)點(diǎn)A′在BD上時(shí),設(shè)AE=x,由翻折的性質(zhì)得:EA′=AE=x,BA′=AB=3,則由勾股定理求得AE;當(dāng)點(diǎn)A′在AC上時(shí),由射影定理求得AG,由三角形相似的判定定理證得△AEG∽△ACD,根據(jù)相似三角形的性質(zhì)求得AE.
∵矩形ABCD,
∴∠A=90°,BD===10,
當(dāng)A′在BD上時(shí),如圖1所示:
設(shè)AE=x,
由翻折的性質(zhì)得:EA′=AE=x,BA′=AB=6,
∴ED=8﹣x,∠EFD=∠A=90°,
∴A′D=10﹣6=4,
在Rt△EA′D中,
x2+42=(8﹣x)2,
解得:x=3,
∴AE=3;
當(dāng)點(diǎn)A′在AC上時(shí),如圖2所示:
由翻折的性質(zhì)得:BE垂直平分AA′,AC=10,
由射影定理得:AB2=AGAC,
∴AG=,
∵∠AGE=∠D=90°,∠EAG=∠CAD,
∴△AEG∽△ACD,
=,即=,
∴AG=AE=,
∴AE=.
∴AE的長(zhǎng)為3或.
故答案為3或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一枚棋子放在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正六邊形
ABCDEF的頂點(diǎn)A處,通過(guò)摸球來(lái)確定該棋子的走法,其規(guī)則是:在
一只不透明的袋子中,裝有3個(gè)標(biāo)號(hào)分別為1、2、3的相同小球,攪勻
后從中任意摸出1個(gè),記下標(biāo)號(hào)后放回袋中并攪勻,再?gòu)闹腥我饷?/span>1
個(gè),摸出的兩個(gè)小球標(biāo)號(hào)之和是幾棋子就沿邊按順時(shí)針?lè)较蜃邘讉(gè)單位
長(zhǎng)度.
棋子走到哪一點(diǎn)的可能性最大?求出棋子走到該點(diǎn)的概率.(用列表或畫(huà)樹(shù)狀圖的方法
求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】反比例函數(shù)y=(k≠0)與一次函數(shù)y=mx+b(m≠0)交于點(diǎn)A(1,2k﹣1).
(1)求反比例函數(shù)的解析式;
(2)若一次函數(shù)與x軸交于點(diǎn)B,且△AOB的面積為3,求一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】山西特產(chǎn)專(zhuān)賣(mài)店銷(xiāo)售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷(xiāo)售可增加20千克,若該專(zhuān)賣(mài)店銷(xiāo)售這種核桃要想平均每天獲利2240元,請(qǐng)回答:
(1)每千克核桃應(yīng)降價(jià)多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線AB與x軸、y軸分別交于點(diǎn)A、B,作等腰直角三角形ABC,使∠BAC=90°,將△ABC沿著射線AB平移得到△A′B′C′,當(dāng)點(diǎn)A′與點(diǎn)B重合時(shí)停止運(yùn)動(dòng).設(shè)平移距離為m,△A′B′C′與△ABO重合部分的面積為S,S關(guān)于m的函數(shù)圖象如圖2所示.(其中0≤m≤時(shí),函數(shù)的解析式不同)
(1)填空:a= ;
(2)求直線AB的解析式;
(3)求S關(guān)于m的解析式,并寫(xiě)出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:拋物線y=x2+bx+c與直線y=﹣x﹣1交于點(diǎn)A,B.其中點(diǎn)B的橫坐標(biāo)為2.點(diǎn)P(m,n)是線段AB上的動(dòng)點(diǎn).
(1)求拋物線的表達(dá)式;
(2)過(guò)點(diǎn)P的直線垂直于x軸,交拋物線于點(diǎn)Q,求線段PQ的長(zhǎng)度l與m的關(guān)系式,m為何值時(shí),PQ最長(zhǎng)?
(3)在平角直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)稱(chēng)為整點(diǎn),記頂點(diǎn)都是整點(diǎn)的四邊形為整點(diǎn)四邊形,在(2)的情況下,在平面內(nèi)找出所有符合要求的整點(diǎn)R,使P、Q、B、R為整點(diǎn)平行四邊形,請(qǐng)直接寫(xiě)出整點(diǎn)R的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O的直徑,CD切⊙O于C點(diǎn),弦CF⊥AB于E點(diǎn),連結(jié)AC.
(1)求證:∠ACD=∠ACF;
(2)當(dāng)AD⊥CD,BE=2cm,CF=8cm,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,過(guò)點(diǎn)作的平行線與的平分線交于點(diǎn),與交于點(diǎn),則的長(zhǎng)為( )
A.8B.C.10D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2-2mx-3 (m≠0)與y軸交于點(diǎn)A,其對(duì)稱(chēng)軸與x軸交于點(diǎn)B,頂點(diǎn)為C點(diǎn).
(1)求點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)若∠ACB=45°,求此拋物線的表達(dá)式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com