【題目】如圖,四邊形是正方形,,垂直,點、、在一條直線上,且與恰好關于所在直線成軸對稱.已知,正方形邊長為.
圖中可以繞點________按________時針方向旋轉________后能夠與________重合;
寫出圖中所有形狀、大小都相等的三角形________;
用、的代數(shù)式表示與的面積.
【答案】(1)順與,與;(3), .
【解析】
(1)利用旋轉的定義求解;
(2)利用軸對稱性質可判斷△AEM≌△AEF,利用旋轉的性質得到△ADF≌△ABM;
(3)由于△AEM≌△AEF,則EF=EM,即x=BE+BM=DF+BE,則根據(jù)三角形面積公式得到S△AME=xy,然后利用S△CEF=S正方形ABCD-S△AEF-S△ABE-S△ADF可表示出△EFC的面積.
(1)圖中△ADF可以繞點A按順時針方向旋轉90°后能夠與△ABM重合;
(2)△AEM與△AEF,△ADF與△ABM;
(3)∵△AEM與△AEF恰好關于所在直線成軸對稱,
∴EF=EM,
即x=BE+BM,
∵BM=DF,
∴x=DF+BE,
∴S△AME=ABME=xy,
S△CEF=S正方形ABCD-S△AEF-S△ABE-S△ADF=y2-xy-yBE-yDF=y2-xy-y(BE+DF)=y2-xy-yx=y2-xy.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)與一次函數(shù)y=x+b的圖象,都經(jīng)過點A(1,2)
(1)試確定反比例函數(shù)和一次函數(shù)的解析式;
(2)求一次函數(shù)圖象與兩坐標軸的交點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,請用無刻度直尺和圓規(guī),完成下列作圖(不要求寫作法,保留作圖痕跡):
(1)在邊上找一點,使得:將沿著過點的某一條直線折疊,點與點能重合,請在圖①中作出點;
(2)在邊上找一點,使得:將沿著過點的某一條直線折疊,點能落在邊上的點處,且,請在圖②中作出點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),一架云梯AB斜靠在一豎直的墻上,云梯的頂端A距地面15米,梯子的長度比梯子底端B離墻的距離大5米.
(1)這個云梯的底端B離墻多遠?
(2)如圖(2),如果梯子的頂端下滑了8m(AC的長),那么梯子的底部在水平方向右滑動了多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】利用墻為一邊,用長為的材料作另三邊,圍成一個面積為的長方形小花園,這個長方形的長和寬各是( )
A. 5m,4m B. 8m,2.5m
C. 10m,2m D. 5m,4m或8m,2.5m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,CE是外角∠ACD的平分線,BE是∠ABC的平分線.
(1)求證:∠A=2∠E,以下是小明的證明過程,請在括號里填寫理由.
證明:∵∠ACD是△ABC的一個外角,∠2是△BCE的一個外角,(已知)
∴∠ACD=∠ABC+∠A,∠2=∠1+∠E(_________)
∴∠A=∠ACD﹣∠ABC,∠E=∠2﹣∠1(等式的性質)
∵CE是外角∠ACD的平分線,BE是∠ABC的平分線(已知)
∴∠ACD=2∠2,∠ABC=2∠1(_______)
∴∠A=2∠2﹣2∠1(_________)
=2(∠2﹣∠1)(_________)
=2∠E(等量代換)
(2)如果∠A=∠ABC,求證:CE∥AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C、D是⊙O上的點,且OC∥BD,AD分別與BC、OC相較于點E、F,則下列結論:①AD⊥BD;②∠AOC=∠AEC; ③BC平分∠ABD;④△CEF≌△BED.其中一定成立的是_____(把你認為正確結論的序號都填上).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com