直線AB:y=-x-b分別與x、y軸交于A(6,0)、B兩點(diǎn),過(guò)點(diǎn)B的直線交x軸負(fù)半軸于C,且OB:OC=3:1;
(1)求直線BC的解析式;
(2)直線EF:y=kx-k(k≠0)交AB于E,交BC于點(diǎn)F,交x軸于D,是否存在這樣的直線EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,說(shuō)明理由;
(3)如圖,P為A點(diǎn)右側(cè)x軸上的一動(dòng)點(diǎn),以P為直角頂點(diǎn)、BP為腰在第一象限內(nèi)作等腰直角三角形△BPQ,連接QA并延長(zhǎng)交y軸于點(diǎn)K.當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),K點(diǎn)的位置是否發(fā)生變化?如果不變請(qǐng)求出它的坐標(biāo);如果變化,請(qǐng)說(shuō)明理由.
(1)由已知:0=-6-b,
∴b=-6,
∴AB:y=-x+6.
∴B(0,6)
∴OB=6
∵OB:OC=3:1,
OC=
OB
3
=2
,
∴C(-2,0)
設(shè)BC的解析式是Y=ax+c,代入得;
6=0•a+c
0=-2a+c

解得:
a=3
c=6

∴BC:y=3x+6.
直線BC的解析式是:y=3x+6;

(2)過(guò)E、F分別作EM⊥x軸,F(xiàn)N⊥x軸,則∠EMD=∠FND=90°.
∵S△EBD=S△FBD,
∴DE=DF.
又∵∠NDF=∠EDM,
∴△NFD≌△EDM,
∴FN=ME.
聯(lián)立
y=kx-k
y=-x+6
yE=
5k
k+1
,
聯(lián)立
y=kx-k
y=3x+6
yF=
9k
k-3

∵FN=-yF,ME=yE,
5k
k+1
=
-9k
k-3

∵k≠0,
∴5(k-3)=-9(k+1),
k=
3
7
;

(3)不變化K(0,-6).
過(guò)Q作QH⊥x軸于H,
∵△BPQ是等腰直角三角形,
∴∠BPQ=90°,PB=PQ,
∵∠BOA=∠QHA=90°,
∴∠BPO=∠PQH,
∴△BOP≌△HPQ,
∴PH=BO,OP=QH,
∴PH+PO=BO+QH,
即OA+AH=BO+QH,
又OA=OB,
∴AH=QH,
∴△AHQ是等腰直角三角形,
∴∠QAH=45°,
∴∠OAK=45°,
∴△AOK為等腰直角三角形,
∴OK=OA=6,
∴K(0,-6).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中∠ACB=90°,D是AB的中點(diǎn),以DC為直徑的⊙O交△ABC的三邊,交點(diǎn)分別是G,F(xiàn),E點(diǎn).GE,CD的交點(diǎn)為M,且ME=4
6
,MD:CO=2:5.
(1)求證:∠GEF=∠A;
(2)求⊙O的直徑CD的長(zhǎng);
(3)若cos∠B=0.6,以C為坐標(biāo)原點(diǎn),CA,CB所在的直線分別為X軸和Y軸,建立平面直角坐標(biāo)系,求直線AB的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖是一測(cè)力器,在不受力的自然狀態(tài)下,測(cè)力器彈簧MN為40cm(如圖(1));當(dāng)被測(cè)試者將手掌放在點(diǎn)P處,然后盡力向前推,測(cè)力器彈簧MN的長(zhǎng)度會(huì)隨著受力大小的不同而發(fā)生變化,此時(shí)測(cè)力器的刻度表的指針?biāo)傅臄?shù)字就是測(cè)試者的作用力;圖(2)是測(cè)力器在最大受力極限狀態(tài)時(shí),測(cè)力器彈簧MN的最小長(zhǎng)度為8cm;圖(3)、圖(4)是兩次測(cè)試時(shí),測(cè)力器所展現(xiàn)的數(shù)據(jù)狀態(tài);已知測(cè)力器彈簧MN的長(zhǎng)度y(cm)與受力x(N)之間存在一次函數(shù)關(guān)系.
(1)求y與x之間的函數(shù)解析式;
(2)當(dāng)指針指向300時(shí),MN的長(zhǎng)是多少?
(3)求該測(cè)力器在設(shè)計(jì)時(shí)所能承受的最大作用力是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知一次函數(shù)y=kx+b的圖象可以看作是由直線y=2x向上平移6個(gè)單位長(zhǎng)度得到的,且y=kx+b與兩坐標(biāo)軸圍成的三角形面積被一正比例函數(shù)分成面積的比為1:2的兩部分,求這個(gè)正比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:y是x一次函數(shù),且當(dāng)x=2時(shí),y=-3;且當(dāng)x=-2時(shí),y=1
(1)試求y與x之間的函數(shù)關(guān)系式并畫出圖象;
(2)在圖象上標(biāo)出與x軸、y軸的交點(diǎn)坐標(biāo);
(3)當(dāng)x取何值時(shí),y=5?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B分別在x軸、y軸的正半軸上,且滿足
OB-3
+|OA-1|=0.
(1)求點(diǎn)A、B的坐標(biāo);
(2)若OC=
3
,求點(diǎn)O到直線CB的距離;
(3)在(2)的條件下,若點(diǎn)P從C點(diǎn)出發(fā)以一個(gè)單位每秒的速度沿直線CB從點(diǎn)C到B的方向運(yùn)動(dòng),連接AP.設(shè)△ABP的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形DEFG是△ABC的內(nèi)接矩形,如果△ABC的高線AH長(zhǎng)8cm,底邊BC長(zhǎng)10cm,設(shè)DG=xcm,DE=ycm,求y關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有一個(gè)物體沿一個(gè)斜坡下滑,它們速度y(米/秒)與其下滑時(shí)間x(秒)的關(guān)系如圖所示.
(1)寫出y與x之間的關(guān)系式;
(2)下滑4秒時(shí)物體的速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商店需要購(gòu)進(jìn)一批電視機(jī)和洗衣機(jī),根據(jù)市場(chǎng)調(diào)查,決定電視機(jī)進(jìn)貨量不少于洗衣機(jī)的進(jìn)貨量的一半.電視機(jī)與洗衣機(jī)的進(jìn)價(jià)和售價(jià)如表:
類 別電視機(jī)洗衣機(jī)
進(jìn)價(jià)(元/臺(tái))18001500
售價(jià)(元/臺(tái))20001600
計(jì)劃購(gòu)進(jìn)電視機(jī)和洗衣機(jī)共100臺(tái),商店最多可籌集資金161 800元.
(1)請(qǐng)你幫助商店算一算有多少種進(jìn)貨方案?(不考慮除進(jìn)價(jià)之外的其它費(fèi)用)
(2)哪種進(jìn)貨方案待商店銷售購(gòu)進(jìn)的電視機(jī)與洗衣機(jī)完畢后獲得利潤(rùn)最多?并求出最多利潤(rùn).(利潤(rùn)=售價(jià)-進(jìn)價(jià))

查看答案和解析>>

同步練習(xí)冊(cè)答案