如圖,分別以Rt△ABC的直角邊AC,BC為邊,在Rt△ABC外作兩個(gè)等邊三角形△ACE和△BCF,連接BE,AF.
求證:BE=AF.

證明:∵△ACE和△BCF是等邊三角形,
∴∠ACE=∠FCB=60°,CE=AC,CF=CB,
∴∠ACF=∠ECB=60°+∠ACB.
在△CEB與△CAF中,
,
∴△CEB≌△CAF,
∴BE=AF.
分析:利用等邊三角形的性質(zhì)得到相等的邊和角,CE=AC,CF=CB,∠ACF=∠ECB=90°+60°=150°,從而判定△CEB≌△ACF得到BE=AF.
點(diǎn)評(píng):本題考查三角形全等的判定和等邊三角形的性質(zhì),判定兩個(gè)三角形全等的一般方法有:SSS、SAS、SSA、HL.判定兩個(gè)三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,分別以Rt△ABC的斜邊AB、直角邊AC為邊向外作等邊△ABD和△ACE,F(xiàn)為AB的中點(diǎn),DE,AB相交于點(diǎn)G,若∠BAC=30°,下列結(jié)論:①EF⊥AC;②四邊形ADFE為平行四邊形;③AD=4AG;④△DBF≌△EFA.其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,分別以Rt△ABC三邊為直徑向外作三個(gè)半圓,其面積分別用S1,S2,S3表示,則不難證明S1=S2+S3
(1)如圖②,分別以Rt△ABC三邊為邊向外作三個(gè)正方形,其面積分別用S1,S2,S3表示,寫出它們的關(guān)系;(不必證明)
(2)如圖③,分別以Rt△ABC三邊為邊向外作正三角形,其面積分別用S1,S2,S3表示,確定它們的關(guān)系并證明;
(3)若分別以Rt△ABC三邊為邊向外作三個(gè)一般三角形,其面積分別用S1,S2,S3表示,為使S1,S2,S3之間仍具有與(2)相同的關(guān)系,所作三角形應(yīng)滿足什么條件?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,分別以Rt△ABC的斜邊AB、直角邊AC為邊向外作等邊△ABD和△ACE,F(xiàn)為AB的中點(diǎn),連接DF、EF、DE,EF與AC交于點(diǎn)O,DE與AB交于點(diǎn)G,連接OG,若∠BAC=30°,下列結(jié)論:
①△DBF≌△EFA;②AD=AE;③EF⊥AC;④AD=4AG;⑤△AOG與△EOG的面積比為1:4.
其中正確結(jié)論的序號(hào)是( 。
A、①②③B、①④⑤C、①③⑤D、①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,分別以Rt△ABC的斜邊AB、直角邊AC為邊向外作等邊△ABD和△ACE,F(xiàn)為AB中點(diǎn),連接DF、EF,DE、EF與AC交于點(diǎn)O,DE與AB交于點(diǎn)G,連接OG,若∠BAC=30°,下列結(jié)論:①△DBF≌△EFA;②AD=AE;③EF⊥AC;④AD=4AG;⑤△AOG與△EOG的面積比為1:4.其中正確的結(jié)論的序號(hào)是
①③④
①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,分別以Rt△ABC三邊為邊向外作三個(gè)正方形,其面積分別用S1、S2、S3表示,容易得出S1、S2、S3之間有的關(guān)系式
S1=S2+S3
S1=S2+S3

查看答案和解析>>

同步練習(xí)冊(cè)答案