(2007•萊蕪)如圖,在梯形ABCD中,AD∥BC,對角線AC、BD互相垂直,AC=9,中位線長,則對角線BD的長是   
【答案】分析:作DE∥AC,從而得到四邊形ACED為平行四邊形,根據(jù)平行四邊形的性質(zhì)及中位線定理即可求得BE的長,再利用勾股定理即可求得BD的長.
解答:解:作DE∥AC交BC的延長線于點(diǎn)E
∵AD∥CE,
∴四邊形ACED為平行四邊形,
∴AD=CE,DE=AC=9,ED⊥BD,
∵FJ=(AD+BC)=(CE+BC)=BE=,
∴BE=15,
∴BD===12.
點(diǎn)評:本題考查的知識比較全面,需要用到梯形和三角形中位線定理以及平行四邊形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《圓》(11)(解析版) 題型:解答題

(2007•萊蕪)如圖,△ABC是⊙O的內(nèi)接三角形,AC=BC,D為⊙O中上一點(diǎn),延長DA至點(diǎn)E,使CE=CD.
(1)求證:AE=BD;
(2)若AC⊥BC,求證:AD+BD=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《四邊形》(02)(解析版) 題型:選擇題

(2007•萊蕪)如圖,四邊形ABCD為矩形紙片,把紙片ABCD折疊,使點(diǎn)B恰好落在CD邊的中點(diǎn)E處,折痕為AF,若CD=6,則AF等于( )

A.
B.
C.
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《三角形》(15)(解析版) 題型:解答題

(2007•萊蕪)如圖,△ABC是⊙O的內(nèi)接三角形,AC=BC,D為⊙O中上一點(diǎn),延長DA至點(diǎn)E,使CE=CD.
(1)求證:AE=BD;
(2)若AC⊥BC,求證:AD+BD=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年山東省東營市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2007•萊蕪)如圖,四邊形ABCD為矩形紙片,把紙片ABCD折疊,使點(diǎn)B恰好落在CD邊的中點(diǎn)E處,折痕為AF,若CD=6,則AF等于( )

A.
B.
C.
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年山東省德州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•萊蕪)如圖,△ABC是⊙O的內(nèi)接三角形,AC=BC,D為⊙O中上一點(diǎn),延長DA至點(diǎn)E,使CE=CD.
(1)求證:AE=BD;
(2)若AC⊥BC,求證:AD+BD=CD.

查看答案和解析>>

同步練習(xí)冊答案