(2010•徐州)如圖,已知A(n,-2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn),直線AB與y軸交于點(diǎn)C.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)求不等式kx+b-<0的解集.(直接寫出答案)

【答案】分析:(1)由B點(diǎn)在反比例函數(shù)y=上,可求出m,再由A點(diǎn)在函數(shù)圖象上,由待定系數(shù)法求出函數(shù)解析式;
(2)由上問求出的函數(shù)解析式聯(lián)立方程求出A,B,C三點(diǎn)的坐標(biāo),從而求出△AOC的面積;
(3)由圖象觀察函數(shù)y=的圖象在一次函數(shù)y=kx+b圖象的上方,對(duì)應(yīng)的x的范圍.
解答:解:(1)∵B(1,4)在反比例函數(shù)y=上,
∴m=4,
又∵A(n,-2)在反比例函數(shù)y=的圖象上,
∴n=-2,
又∵A(-2,-2),B(1,4)是一次函數(shù)y=kx+b的上的點(diǎn),聯(lián)立方程組解得,
k=2,b=2,
,y=2x+2;

(2)過點(diǎn)A作AD⊥CD,
∵一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn)為A,B,聯(lián)立方程組解得,
A(-2,-2),B(1,4),C(0,2),
∴AD=2,CO=2,
∴△AOC的面積為:S=AD•CO=×2×2=2;

(3)由圖象知:當(dāng)0<x<1和-2<x<0時(shí)函數(shù)y=的圖象在一次函數(shù)y=kx+b圖象的上方,
∴不等式kx+b-<0的解集為:0<x<1或x<-2.
點(diǎn)評(píng):此題考查一次函數(shù)和反比例函數(shù)的性質(zhì)及圖象,考查用待定系數(shù)法求函數(shù)的解析式,還間接考查函數(shù)的增減性,從而來解不等式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2010•徐州)如圖①,梯形ABCD中,∠C=90°.動(dòng)點(diǎn)E、F同時(shí)從點(diǎn)B出發(fā),點(diǎn)E沿折線BA-AD-DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止運(yùn)動(dòng),點(diǎn)F沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止運(yùn)動(dòng),它們運(yùn)動(dòng)時(shí)的速度都是1cm/s.設(shè)E、F出發(fā)ts時(shí),△EBF的面積為ycm2.已知y與t的函數(shù)圖象如圖②所示,其中曲線OM為拋物線的一部分,MN、NP為線段.請(qǐng)根據(jù)圖中的信息,解答下列問題:
(1)梯形上底的長AD=______cm,梯形ABCD的面積______cm2;
(2)當(dāng)點(diǎn)E在BA、DC上運(yùn)動(dòng)時(shí),分別求出y與t的函數(shù)關(guān)系式(注明自變量的取值范圍);
(3)當(dāng)t為何值時(shí),△EBF與梯形ABCD的面積之比為1:2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(06)(解析版) 題型:解答題

(2010•徐州)如圖,已知A(n,-2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn),直線AB與y軸交于點(diǎn)C.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)求不等式kx+b-<0的解集.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2010•徐州)如圖,已知A(n,-2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn),直線AB與y軸交于點(diǎn)C.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)求不等式kx+b-<0的解集.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省徐州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•徐州)如圖①,梯形ABCD中,∠C=90°.動(dòng)點(diǎn)E、F同時(shí)從點(diǎn)B出發(fā),點(diǎn)E沿折線BA-AD-DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止運(yùn)動(dòng),點(diǎn)F沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止運(yùn)動(dòng),它們運(yùn)動(dòng)時(shí)的速度都是1cm/s.設(shè)E、F出發(fā)ts時(shí),△EBF的面積為ycm2.已知y與t的函數(shù)圖象如圖②所示,其中曲線OM為拋物線的一部分,MN、NP為線段.請(qǐng)根據(jù)圖中的信息,解答下列問題:
(1)梯形上底的長AD=______cm,梯形ABCD的面積______cm2
(2)當(dāng)點(diǎn)E在BA、DC上運(yùn)動(dòng)時(shí),分別求出y與t的函數(shù)關(guān)系式(注明自變量的取值范圍);
(3)當(dāng)t為何值時(shí),△EBF與梯形ABCD的面積之比為1:2?

查看答案和解析>>

同步練習(xí)冊(cè)答案