(1)圖(1)是正方體木塊,把它切去一塊,可能得到形如圖(2)、(3)、(4)、(5)的木塊。
我們知道,圖(1)的正方體木塊有8個頂點,12條棱,6個面,請你將圖(2),(3),(4),(5)中木塊的頂點數(shù),棱數(shù),面數(shù)填入下表:
(2)觀察上表,請你歸納上述各種木塊的頂點數(shù),棱數(shù),面數(shù)之間的數(shù)量關(guān)系,這種數(shù)量關(guān)系是:_________.
解:(1)
(2) 頂點數(shù)+ 面數(shù)= 棱數(shù)+2 .
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

28、如圖,A是硬幣圓周上一點,硬幣與數(shù)軸相切于原點O(A與O點重合).假設(shè)硬幣的直徑為1個單位長度,若將硬幣沿數(shù)軸正方向滾動一周,點A恰好與數(shù)軸上點A′重合,則點A′對應的實數(shù)是
π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△OAB是邊長為2+
3
的等邊三角形,其中O是坐標原點,頂點B在y軸正方向上,將△OAB折疊,使點A落在邊OB上,記為A′,折痕為EF.
(1)當A′E∥x軸時,求點A′和E的坐標;
(2)當A′E∥x軸,且拋物線y=-
1
6
x2+bx+c經(jīng)過點A′和E時,求拋物線與x軸的交點的坐標;
(3)當點A′在OB上運動,但不與點O、B重合時,能否使△A′EF成為直角三角形?精英家教網(wǎng)若能,請求出此時點A′的坐標;若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,圖中所有三角形是直角三角形,所有四邊形是正方有形,s1=9,s3=144,s4=169,則s2=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

課題學習:
(1)如圖1,E、F、G、H分別是正方形ABCD各邊的中點,則四邊形EFGH是
正方
正方
形,正方形ABCD的面積記為S1,EFGH的面積為S2,則S1和S2間的數(shù)量關(guān)系:
S1=2S2
S1=2S2
;
(2)如圖2,E、F、G、H分別是菱形ABCD各邊的中點,則四邊形EFGH是
形,菱形ABCD的面積為S1,EFGH的面積為S2,則S1和S2間的數(shù)量關(guān)系:
S1=2S2
S1=2S2
;
(3)如圖3,梯形ABCD中,AD∥BC,對角線AC⊥BD,垂足為O,E、F、G、H分別為各邊的中點.四邊形EFGH是
形;若梯形ABCD的面積記為S1,四邊形EFGH的面積記為S2,由圖可猜想S1和S2間的數(shù)量關(guān)系為:
S1=2S2
S1=2S2
;
(4)如圖4,E、G分別是平行四邊形ABCD的邊AB、DC的中點,H、F分別是邊形AD、BC上的點,且四邊形EFGH為平行四邊形,若把平行四邊形ABCD的面積記為S1,把平行四邊形形EFGH的面積記為S2,試猜想S1和S2間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,A是數(shù)軸上表示-30的點,B是數(shù)軸上表示10的點,C是數(shù)軸上表示18的點,點A,B,C在數(shù)軸上同時向數(shù)軸的正方向運動,點A運動的速度是6個單位長度每秒,點B和C運動的速度是3個單位長度每秒.設(shè)三個點運動的時間為t(秒).
(1)當t為何值時,線段AC=6(單位長度)?
(2)t≠5時,設(shè)線段OA的中點為P,線段OB的中點為M,線段OC的中點為N,求2PM-PN=2時t的值.

查看答案和解析>>

同步練習冊答案