閱讀材料:如圖23—1,的周長(zhǎng)為,面積為S,內(nèi)切圓的半徑為,探究與S、之間的關(guān)系.連結(jié),,


,


解決問(wèn)題

(1)利用探究的結(jié)論,計(jì)算邊長(zhǎng)分別為5,12,13的三角形內(nèi)切圓半徑;
(2)若四邊形存在內(nèi)切圓(與各邊都相切的圓),如圖23—2且面積為,各邊長(zhǎng)分別為,,,試推導(dǎo)四邊形的內(nèi)切圓半徑公式;
(3)若一個(gè)邊形(為不小于3的整數(shù))存在內(nèi)切圓,且面積為,各邊長(zhǎng)分別為,,,合理猜想其內(nèi)切圓半徑公式(不需說(shuō)明理由).

答案:(1),三角形為直角三角形……………2分
面積,    ……………4分
(2)設(shè)四邊形內(nèi)切圓的圓心為,連結(jié),

,            ……………8分
(3)                          ……………10分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)解不等式:
x-3
2
-1>
x-5
3

(2)做一做:
精英家教網(wǎng)
用四塊如圖1的瓷磚拼成一個(gè)正方形,使拼成的圖案成軸對(duì)稱(chēng)圖形,請(qǐng)你在圖2,圖3,圖4中各畫(huà)出一種拼法(要求三種拼法各不相同,所畫(huà)圖案中的陰影部分用斜線表示)
(3)讀一讀:
式子“1+2+3+4+5+…+100”表示1開(kāi)始的100個(gè)連續(xù)自然數(shù)的和.
由于上述式子比較長(zhǎng),書(shū)寫(xiě)也不方便,為了簡(jiǎn)便起見(jiàn),我們可以將
“1+2+3+4+5+…+100”表示為
100
n=1
n
,這里“Σ”是求和符號(hào).
例如:“1+3+5+7+9+…+99”(即從1開(kāi)始的100以內(nèi)的連續(xù)奇數(shù)的和)可表示為
50
n=1
(2n-1)
;又如:“13+23+33+43+53+63+73+83+93+103”可表示為
10
n=1
n3

同學(xué)們,通過(guò)對(duì)以上材料的閱讀,請(qǐng)解答下列問(wèn)題:
<1>2+4+6+8+10+…+100(即從2開(kāi)始的100以內(nèi)的連續(xù)偶數(shù)的和)用求和符號(hào)可表示為
 
;
<2>計(jì)算:
5
n=1
(n2-1)=
 
(填寫(xiě)最后的計(jì)算結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料:

正方形網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)稱(chēng)為格點(diǎn),以格點(diǎn)為頂點(diǎn)的三角形叫格點(diǎn)三角形.

        數(shù)學(xué)老師給小明同學(xué)出了一道題目:在圖23-1正方形網(wǎng)格(每個(gè)小正方形邊長(zhǎng)為1)中畫(huà)出格點(diǎn)△ABC,使,;

小明同學(xué)的做法是:由勾股定理,得,,于是畫(huà)出線段AB、AC、BC,從而畫(huà)出格點(diǎn)△ABC.(1)請(qǐng)你參考小明同學(xué)的做法,在圖23-2正方形網(wǎng)格(每個(gè)小正方形邊長(zhǎng)為1)中畫(huà)出格點(diǎn)△點(diǎn)位置如圖所示),使==5,.(直接畫(huà)出圖形,不寫(xiě)過(guò)程);

· ·

 
    (2)觀察△ABC與△的形狀,猜想∠BAC與∠

有怎樣的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《不等式與不等式組》(02)(解析版) 題型:解答題

(2003•無(wú)錫)(1)解不等式:
(2)做一做:

用四塊如圖1的瓷磚拼成一個(gè)正方形,使拼成的圖案成軸對(duì)稱(chēng)圖形,請(qǐng)你在圖2,圖3,圖4中各畫(huà)出一種拼法(要求三種拼法各不相同,所畫(huà)圖案中的陰影部分用斜線表示)
(3)讀一讀:
式子“1+2+3+4+5+…+100”表示1開(kāi)始的100個(gè)連續(xù)自然數(shù)的和.
由于上述式子比較長(zhǎng),書(shū)寫(xiě)也不方便,為了簡(jiǎn)便起見(jiàn),我們可以將
“1+2+3+4+5+…+100”表示為,這里“Σ”是求和符號(hào).
例如:“1+3+5+7+9+…+99”(即從1開(kāi)始的100以內(nèi)的連續(xù)奇數(shù)的和)可表示為;又如:“13+23+33+43+53+63+73+83+93+103”可表示為
同學(xué)們,通過(guò)對(duì)以上材料的閱讀,請(qǐng)解答下列問(wèn)題:
<1>2+4+6+8+10+…+100(即從2開(kāi)始的100以內(nèi)的連續(xù)偶數(shù)的和)用求和符號(hào)可表示為_(kāi)_____;
<2>計(jì)算:______(填寫(xiě)最后的計(jì)算結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年江蘇省無(wú)錫市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•無(wú)錫)(1)解不等式:
(2)做一做:

用四塊如圖1的瓷磚拼成一個(gè)正方形,使拼成的圖案成軸對(duì)稱(chēng)圖形,請(qǐng)你在圖2,圖3,圖4中各畫(huà)出一種拼法(要求三種拼法各不相同,所畫(huà)圖案中的陰影部分用斜線表示)
(3)讀一讀:
式子“1+2+3+4+5+…+100”表示1開(kāi)始的100個(gè)連續(xù)自然數(shù)的和.
由于上述式子比較長(zhǎng),書(shū)寫(xiě)也不方便,為了簡(jiǎn)便起見(jiàn),我們可以將
“1+2+3+4+5+…+100”表示為,這里“Σ”是求和符號(hào).
例如:“1+3+5+7+9+…+99”(即從1開(kāi)始的100以內(nèi)的連續(xù)奇數(shù)的和)可表示為;又如:“13+23+33+43+53+63+73+83+93+103”可表示為
同學(xué)們,通過(guò)對(duì)以上材料的閱讀,請(qǐng)解答下列問(wèn)題:
<1>2+4+6+8+10+…+100(即從2開(kāi)始的100以內(nèi)的連續(xù)偶數(shù)的和)用求和符號(hào)可表示為_(kāi)_____;
<2>計(jì)算:______(填寫(xiě)最后的計(jì)算結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案