【題目】如圖是201812月份的日歷,我們選擇其中的方框部分,將每個方框部分中4個位置上的數(shù)交叉求平方和,再相減,例如:(32+112)-(42+102)=14,(212+292)-(222+282)=14,不難發(fā)現(xiàn)結(jié)果都是14.

(1)今天是1212日,請你寫一個含今天日期在內(nèi)的類似部分的算式;

(2)請你利用整式的運算對以上規(guī)律加以證明.

【答案】(1)見解析;(2)證明見解析.

【解析】

(1)利用規(guī)定的方法計算,比較結(jié)果得出規(guī)律即可;

(2)設(shè)最小的一個數(shù)為n,其他三個分別為n+1,n+7,n+8,利用交叉相乘計算求平方和證明即可.

(1)答案不唯一.滿足下表算式即可.

n

n+1

n+7

n+8

(2)設(shè)如(1)表:

=

=

=

=14.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB =AC=2,B = 40°,點D在線段BC上運動(不與點B,C重合),連接AD,作∠ADE = 40°,DE交線段AC于點E

(1)當∠BDA = 115°時,∠BAD= °,DEC = °,當點D從點B向點C運動時,∠BDA逐漸變 (填”) .

(2)當DC等于多少時,ABD≌△DCE?請說明理由

(3)在點D的運動過程中,是否存在ADE是等腰三角形?若存在,請直接寫出此時∠BDA的度數(shù);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,推理填空:

(1)∵∠1=_______(已知),

∴AC∥ED(同位角相等,兩直線平行).

(2)∵∠2=______(已知),

∴AB∥FD(內(nèi)錯角相等,兩直線平行).

(3)∵∠2+_______=180°(已知),

∴AC∥ED(同旁內(nèi)角互補,兩直線平行).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABCDx軸,BCDEy軸,且AB=CD=4 cm,OA=5 cm,DE=2 cm,動點P從點A出發(fā),以每秒1 cm的速度,沿ABC路線向點C運動;動點Q從點O出發(fā),以每秒2 cm的速度,沿OED路線向點D運動.若P,Q兩點同時出發(fā),其中一點到達終點時,運動停止.

(1)直接寫出B,C,D三個點的坐標;

(2)P,Q兩點出發(fā)3 s時,求三角形PQC的面積;

(3)設(shè)兩點運動的時間為t s,用含t的式子表示運動過程中三角形OPQ的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如下數(shù)表是由從1開始的連續(xù)自然數(shù)組成的,觀察規(guī)律并填空:

(1)表中第8行的最后一個數(shù)是______,它是自然數(shù)_____的平方,第8行共有_____個數(shù);

(2)用含n的代數(shù)式表示:第n行的第一個數(shù)是___________,最后一個數(shù)是_____,第n行共有_________個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在面積都相等的所有矩形中,當其中一個矩形的一邊長為1時,它的另一邊長為3.
(1)設(shè)矩形的相鄰兩邊長分別為x,y.
①求y關(guān)于x的函數(shù)表達式;
②當y≥3時,求x的取值范圍;
(2)圓圓說其中有一個矩形的周長為6,方方說有一個矩形的周長為10,你認為圓圓和方方的說法對嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k≠0)的圖象經(jīng)過點(1,0)和(0,2).
(1)當﹣2<x≤3時,求y的取值范圍;
(2)已知點P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對任意有理數(shù)x、y定義運算如下:xy=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運算,如當a=1,b=2,c=3時,l3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運算滿足條件,12=3,23=4,并且有一個不為零的數(shù)d使得對任意有理數(shù)xd=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C在一條直線上,△ABD,△BCE均為等邊三角形,連接AECD,AE分別交CD,BD于點M,PCDBE于點Q,連接PQ,BM,下面結(jié)論:

①△ABE≌△DBC;②∠DMA=60°③△BPQ為等邊三角形;④MB平分∠AMC,

其中結(jié)論正確的有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習冊答案