已知在△ABC中,∠ABC=90°,AB=3,BC=4.點Q是線段AC上的一個動點,過點Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點P.
(1)當(dāng)點P在線段AB上時,求證:△AQP∽△ABC;
(2)當(dāng)△PQB為等腰三角形時,求AP的長.
(1)證明見解析;(2)或6.
【解析】
試題分析:(1)由兩對角相等(∠APQ=∠C,∠A=∠A),證明△APQ∽△ABC;(2)當(dāng)△PQB為等腰三角形時,有兩種情況,需要分類討論:(I)當(dāng)點P在線段AB上時,如題圖1所示,由△APQ∽△ABC計算AP的長,(II)當(dāng)點P在線段AB的延長線上時,如題圖2所示,利用角之間的關(guān)系,證明點B為線段AP的中點,從而可以求出AP.
試題解析:(1)∵∠A+∠APQ=90°,∠A+∠C=90°,∴∠APQ=∠C.
在△APQ與△ABC中,∵∠APQ=∠C,∠A=∠A,∴△APQ∽△ABC.
(2)在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.
∵∠BPQ為鈍角,∴當(dāng)△PQB為等腰三角形時,只可能是PB=PQ.
(I)當(dāng)點P在線段AB上時,如題圖1所示,
由(1)可知,△APQ∽△ABC,∴,即,解得:.
∴.
(II)當(dāng)點P在線段AB的延長線上時,如題圖2所示,
∵BP=BQ,∴∠BQP=∠P.
∵∠BQP+∠AQB=90°,∠A+∠P=90°,∴∠AQB=∠A. ∴BQ=AB.
∴AB=BP,點B為線段AB中點.
∴AP=2AB=2×3=6.
綜上所述,當(dāng)△PQB為等腰三角形時,AP的長為或6.
考點:1.相似三角形的判定和性質(zhì);2.勾股定理;3.等腰三角形的性質(zhì);4.直角三角形斜邊上中線的性質(zhì);5.分類思想的應(yīng)用.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com