【答案】
分析:(1)由圖②的函數(shù)圖象知:從第4-5秒,S的值恒為12,即此時(shí)矩形全部落在正方形的內(nèi)部,由此可求得兩個(gè)條件:①矩形的面積為12,②正方形的邊長(zhǎng)為1+DE,根據(jù)這兩個(gè)條件求解即可.
(2)當(dāng)0≤t≤5時(shí),矩形在直線(xiàn)AB的左側(cè),可用t表示出AD′、PF′的長(zhǎng),易求得D′G、CP的長(zhǎng),即可用勾股定理求得AG′
2、CF′
2的值,即可得到y(tǒng)、t的函數(shù)關(guān)系式.
(3)此題要分五種情況討論:
①當(dāng)0≤t<4時(shí),點(diǎn)E′在D點(diǎn)右側(cè);由于∠HG′F′、∠HF′G′都是銳角,顯然直線(xiàn)AG′與CF′不可能平行;當(dāng)兩條直線(xiàn)垂直時(shí),△G′HF′是直角三角形,易證得△AD′G′∽△CPF′,根據(jù)相似三角形得到的比例線(xiàn)段即可求得t的值;
②當(dāng)t=4時(shí),D、E′重合,此時(shí)直線(xiàn)DC與E′F′重合,顯然此時(shí)AG′與CF′既不平行也不垂直,因?yàn)檫^(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與已知直線(xiàn)平行或垂直;
③當(dāng)4<t<5時(shí),矩形在正方形的內(nèi)部,延長(zhǎng)G′F′交BC于P,延長(zhǎng)AG′交CD于Q,此時(shí)∠CF′P是銳角,所以∠CF′G是鈍角,顯然AG′與CF′不可能垂直;當(dāng)兩直線(xiàn)平行時(shí),可證得△AD′G′∽△F′PC,進(jìn)而可根據(jù)相似三角形得到的比例線(xiàn)段求得t的值;
④當(dāng)t=5時(shí),此種情況與②相同;
⑤當(dāng)5<t<9時(shí),此時(shí)∠QG′F′與∠CF′G′都是鈍角,顯然AG′與CF′不可能平行;當(dāng)兩直線(xiàn)垂直時(shí),可延長(zhǎng)CF′與AG′相交于點(diǎn)M,延長(zhǎng)G′F′與CD相交于點(diǎn)P,通過(guò)證△AD′G′∽△CPF′來(lái)求得此時(shí)t的值.
解答:解:(1)由圖②知:從第4到第5秒時(shí),S的值恒為12,此時(shí)矩形全部落在正方形的內(nèi)部,
那么矩形的面積為12,即可求得DE=4;
這個(gè)過(guò)程持續(xù)了1秒,說(shuō)明正方形的邊長(zhǎng)為:DE+1=5;
由于矩形的速度恒定,所以5~m也應(yīng)該用4秒的時(shí)間,故m=5+4=9;
即:b=4,a=5,m=9.
(2)如圖,當(dāng)0≤t≤5時(shí),
∵AD′=5-t,D′G=3,PF′=4-t,CP=2,
∴y=9+(5-t)
2+4+(4-t)
2,
∴y=2(t-
)
2+
,
∴當(dāng)t=
時(shí),y有最小值,y
最小值=
.
(3)①當(dāng)0≤t<4時(shí),分別延長(zhǎng)AG′和F′C;
如圖,由于∠1和∠2都是銳角,所以∠1+∠2<180°,
所以AG′與CF′不可能平行.
設(shè)AG′與F′C的延長(zhǎng)線(xiàn)交于點(diǎn)H,
當(dāng)∠G′AD′=∠PCF′時(shí),直線(xiàn)AG′⊥CF′;
∴△AD′G′∽△CPF′,
∴
,
∴
=
,
解得t
1=2,t
2=7(不合題意,舍去).
②當(dāng)t=4時(shí),由于點(diǎn)F′在CD上,而點(diǎn)G′不在直線(xiàn)AD上,
因?yàn)锳D⊥CD,所以AG′不可能也垂直于CD
(因?yàn)檫^(guò)直線(xiàn)外一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直).
同樣,由于AB∥CD,而點(diǎn)G′不在直線(xiàn)AB上,
所以t=4時(shí),AG′也不可能平行于CD(CF′)
(因?yàn)檫^(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與已知直線(xiàn)平行).
③4<t<5時(shí),延長(zhǎng)G′F′交PC于P,延長(zhǎng)AG′交CD于Q,
由于∠CF′P是銳角,所以∠CF′G是鈍角,
所以∠CF′G+∠QGF′≠90°,所以AG′與CF′不可能垂直;
當(dāng)∠G′AD′=∠CF′P時(shí),AG′∥CF′,
易得△AD′G′∽△F′PC,
∴
,
∴
=
,
解得t=4.4.
④當(dāng)t=5時(shí),AG′與CF′既不可能垂直也不可能平行,理由同②.
⑤當(dāng)5<t<9時(shí),因?yàn)椤螿G′F′與∠CF′G′都是鈍角,
所以∠QG′F′+∠CF′G′>180°,
所以AG′與CF′不可能平行.
延長(zhǎng)CF′與AG′相交于點(diǎn)M,延長(zhǎng)G′F′與CD相交于點(diǎn)P;
當(dāng)∠MG′F′+∠MF′G′=90°時(shí),AG′⊥CF′;
又∵∠AG′D′+∠AG′F′=90°,∠MF′G′=∠CF′P,
∴∠AG′D′=∠CF′P,又∠AD′G′=∠F′PC,
∴△AD′G′∽△CPF′,
∴
,即
;
解得:t
1=2(不合題意,舍去),t
2=7;
所以,綜上所述,當(dāng)t=2或t=7時(shí),直線(xiàn)AG′與直線(xiàn)CF′垂直,當(dāng)t=4.4時(shí),直線(xiàn)AG′與直線(xiàn)CF′平行.
點(diǎn)評(píng):此題主要考查了矩形、正方形的性質(zhì),勾股定理,相似三角形的判定和性質(zhì)以及分段函數(shù)的應(yīng)用等知識(shí),同時(shí)還考查了分類(lèi)討論的數(shù)學(xué)思想,難度較大.