如圖1,在△ABC中,AB=AC,點D是BC的中點,點E在AD上.
(1)求證:BE=CE;
(2)如圖2,若BE的延長線交AC于點F,且BF⊥AC,垂足為F,∠BAC=45°,原題設(shè)其它條件不變.求證:△AEF≌△BCF.
(1)根據(jù)等腰三角形三線合一的性質(zhì)可得∠BAE=∠EAC,然后利用“邊角邊”證明△ABE和△ACE全等,再根據(jù)全等三角形對應(yīng)邊相等證明即可。
(2)先判定△ABF為等腰直角三角形,再根據(jù)等腰直角三角形的兩直角邊相等可得AF=BF,再根據(jù)同角的余角相等求出∠EAF=∠CBF,然后利用“角邊角”證明△AEF和△BCF全等即可。
【解析】
分析:(1)根據(jù)等腰三角形三線合一的性質(zhì)可得∠BAE=∠EAC,然后利用“邊角邊”證明△ABE和△ACE全等,再根據(jù)全等三角形對應(yīng)邊相等證明即可。
(2)先判定△ABF為等腰直角三角形,再根據(jù)等腰直角三角形的兩直角邊相等可得AF=BF,再根據(jù)同角的余角相等求出∠EAF=∠CBF,然后利用“角邊角”證明△AEF和△BCF全等即可。
證明:(1)∵AB=AC,D是BC的中點,∴∠BAE=∠EAC。
在△ABE和△ACE中,∵,
∴△ABE≌△ACE(SAS)。∴BE=CE。
(2)∵∠BAC=45°,BF⊥AF,∴△ABF為等腰直角三角形。∴AF=BF。
∵AB=AC,點D是BC的中點,∴AD⊥BC!唷螮AF+∠C=90°。
∵BF⊥AC,∴∠CBF+∠C=90°!唷螮AF=∠CBF。
在△AEF和△BCF中,∵,
∴△AEF≌△BCF(ASA)。
科目:初中數(shù)學(xué) 來源: 題型:
PE |
CE |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
BC2+CD2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
DE |
BD |
1 |
3 |
1 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com