精英家教網 > 初中數學 > 題目詳情

【題目】O是△ABC外一點,OB、OC分別平分△ABC的外角∠CBE、∠BCF,若∠A50°,則∠BOC=_______度.

【答案】65°

【解析】

利用三角形內角和定理求得∠ABC+ACB=130°,根據三角形外角性質得到∠CBE=A+ACB,∠BCF=A+ABC,進而求得∠CBE+∠BCF=230°,根據角平分線定義可知

1=2=CBE,∠3=4=BCF,進而求得∠2+3=115°,最后利用三角形內角和定理即可解決問題.

∵∠A+ABC+ACB=180°,∠A50°,

∴∠ABC+ACB=130°

∵∠CBE、∠BCF是△ABC的外角

∴∠CBE=A+ACB,∠BCF=A+ABC

∴∠CBE+∠BCF=A+ACB+A+ABC=230°

OB、OC分別平分∠CBE、∠BCF

∴∠1=2=CBE,∠3=4=BCF

∴∠2+3=(CBE+BCF)=115°

∵∠2+3+BOC=180°

∴∠BOC=65°

故答案為:65°

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,直線l1的函數解析式為y=﹣2x+4,且l1與x軸交于點D,直線l2經過點A、B,直線l1、l2交于點C.

(1)求直線l2的函數解析式;

(2)求ADC的面積;

(3)在直線l2上是否存在點P,使得ADP面積是ADC面積的2倍?如果存在,請求出P坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,EAB上一點,FAD延長線上一點,且DF=BE

1)求證:CE=CF;

2)若點GAD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,DAB=60°,點EAD邊的中點,點MAB邊上的一個動點(不與點A重合),延長MECD的延長線于點N,連接MD,AN.

(1)求證:△NDE≌△MAE;

(2)求證:四邊形AMDN是平行四邊形;

(3)當AM的值為何值時,四邊形AMDN是矩形?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知的半徑為5,弦AB的長度為m,點C是弦AB所對優(yōu)弧上的一動點.

如圖,若,則的度數為______

如圖,若

的正切值;

為等腰三角形,求面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在第1個△A1BC,B=30°,A1B=CB;在邊A1B上任取一點D,延長CA1A2,使A1A2=A1D,得到第2個△A1A2D,在邊A2D上任取一點E,延長A1A2A3,使A2A3=A2E,得到第3個△A2A3E,…按此做法繼續(xù)下去,則第n個三角形中以An為頂點的內角度數是______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC,△ADE是等邊三角形,B,C,D在同一直線上.

求證:(1)CE=AC+CD;(2)∠ECD=60°.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,∠ABC=∠ACB,BDCD、BE分別平分△ABC的內角∠ABC、外角∠ACP、外角∠MBC.以下結論:①ADBC;②DBBE;③∠BDC+ABC90°;④∠A+2BEC180°;⑤DB平分∠ADC.其中正確的結論有( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖2的形狀拼成一個正方形.

1)請用兩種不同的方法求圖2中陰影部分的面積.

方法1 ;

方法2 ;

2)觀察圖2,請你寫出下列三個代數式:之間的等量關系: ;(3)根據(2)題中的等量關系,解決下面的問題:已知a+b=3,ab=2 , 的值.

查看答案和解析>>

同步練習冊答案