18世紀瑞士數(shù)學家歐拉證明了簡單多面體中頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個有趣的關(guān)系式,被稱為歐拉公式.請你觀察下列幾種簡單多面體模型如圖1,解答下列問題:
多面體 頂點數(shù)(V) 面數(shù)(F) 棱數(shù)(E)
四面體 4 4
長方體 8 12
正八面體 8 12
正十二面體 20 12 30
(1)根據(jù)上面多面體模型,完成表格中的空格,你發(fā)現(xiàn)頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的關(guān)系式是
V+F-E=2
V+F-E=2

(2)一個多面體的面數(shù)與頂點數(shù)相等,有12條棱,這個多面體是
7
7
面體
(3)圖2足球雖然是球體,但實際上足球表面是由正五邊形,正六邊形皮料組成的多面體加工而成每塊正五邊形皮料周圍都是正六邊形皮料;每兩個相鄰的多邊形恰有一條公共的邊;每個頂點處都有三塊皮料,而且都遵循一個正五邊形、兩個正六邊形的規(guī)律,請你利用(1)中的關(guān)系式,求出一個足球中各有多少塊正五邊形、正六邊形的皮料.
分析:(1)觀察可得頂點數(shù)+面數(shù)-棱數(shù)=2;
(2)代入(1)中的式子即可得到面數(shù);
(3)設(shè)正五邊形x塊,正六邊形y塊,則由上面的規(guī)律數(shù)可以看出,棱數(shù)E=
1
2
(5x+6y),而頂點數(shù)V=
1
3
(5x+6y),有歐拉公式列出二元一次方程;再由足球表面中所有白皮的邊數(shù)6y是所有黑皮的邊數(shù)5x的2倍列出5x=6y×
1
2
;組成方程組解決問題.
解答:解:(1)四面體的棱數(shù)為6;正八面體的頂點數(shù)為6;關(guān)系式為:V+F-E=2;

(2)由題意得:F+F-12=2,
解得:F=7;

(3)設(shè)正五邊形x塊,正六邊形y塊,由題意得
x+y+
1
3
(5x+6y)-
1
2
(5x+6y)=2
5x=
1
2
×6y

解得
x=12
y=20

所以正五邊形為12塊,正六邊形為20塊.
點評:本題考查多面體的頂點數(shù),面數(shù),棱數(shù)之間的關(guān)系及靈活運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

25、
多面體 頂點數(shù)(V) 面數(shù)(F) 棱數(shù)(E)
四面體 4 4
6
長方體 8
6
12
正八面體
6
8 12
正十二面體 20 12 30
18世紀瑞士數(shù)學家歐拉證明了簡單多面體中頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個有趣的關(guān)系式,被稱為歐拉公式.請你觀察下列幾種簡單多面體模型,解答下列問題:
(1)根據(jù)上面多面體模型,完成表格中的空格,你發(fā)現(xiàn)頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的關(guān)系式是
V+F-E=2

(2)一個多面體的面數(shù)與頂點數(shù)相等,有12條棱,這個多面體是
面體

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18世紀瑞士數(shù)學家歐拉證明了簡單多面體中頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個有趣的關(guān)系式,被稱為歐拉公式,請你觀察下列幾種簡單的多面體模型,解答下列問題:
(1)根據(jù)上面多面體模型,完成表格中的空格:
多面體 頂點數(shù)(V) 面數(shù)(F) 棱數(shù)(E)
四面體 4 4
6
6
 
六面體 8
6
6
 
12
八面體
6
6
 
8 12
你發(fā)現(xiàn)頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的關(guān)系式是
V+F-E=2
V+F-E=2
;
(2)一個多面體的面數(shù)比頂點數(shù)大8,且有30條棱,則這個多面體的面數(shù)是
20
20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

多面體頂點數(shù)(V)面數(shù)(F)棱數(shù)(E)
四面體44______
長方體8______12
正八面體______812
正十二面體201230
18世紀瑞士數(shù)學家歐拉證明了簡單多面體中頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個有趣的關(guān)系式,被稱為歐拉公式.請你觀察下列幾種簡單多面體模型,解答下列問題:
(1)根據(jù)上面多面體模型,完成表格中的空格,你發(fā)現(xiàn)頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的關(guān)系式是______.
(2)一個多面體的面數(shù)與頂點數(shù)相等,有12條棱,這個多面體是______面體.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年浙江省寧波市初中畢業(yè)生學業(yè)考試數(shù)學模擬卷(解析版) 題型:解答題

多面體頂點數(shù)(V)面數(shù)(F)棱數(shù)(E)
四面體44______
長方體8______12
正八面體______812
正十二面體201230
18世紀瑞士數(shù)學家歐拉證明了簡單多面體中頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個有趣的關(guān)系式,被稱為歐拉公式.請你觀察下列幾種簡單多面體模型,解答下列問題:
(1)根據(jù)上面多面體模型,完成表格中的空格,你發(fā)現(xiàn)頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的關(guān)系式是______.
(2)一個多面體的面數(shù)與頂點數(shù)相等,有12條棱,這個多面體是______面體.

查看答案和解析>>

同步練習冊答案