甲、乙從同一地點出發(fā),甲乘坐電動觀光車,乙步行,沿著同一條山路上山游玩,兩人相約在電動車終點站會合.設(shè)乙出發(fā)x分鐘后行走的路程為y米,圖中的折線表示乙在整個行走過程中y與x的函數(shù)關(guān)系.甲乘坐的電動觀光車平均速度為180米/分.
(1)乙行走的總路程是______米,他在中途休息了______分鐘;
(2)①當25≤x≤35時,求y關(guān)于x的函數(shù)關(guān)系.②若甲在乙出發(fā)后20分鐘乘車,則乙出發(fā)后幾分鐘甲能追上乙?
(1)函數(shù)圖象中最高點的縱坐標1800即為乙的總路程,休息的時間=25-20=5,
故答案為1800;5;

(2)①設(shè)所求的函數(shù)解析式為y=kx+b,
25k+b=1200
35k+b=1800

解得:
k=60
b=-300
,
∴y=60x-300;

②設(shè)乙出發(fā)后x分鐘甲能追上乙.
乙的速度為:1200÷20=60米/分;
60×(x-5)=180×(x-20),
解得:x=27.5,
答:乙出發(fā)后27.5分鐘甲能追上乙.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一次函數(shù)y=kx+b的圖象經(jīng)過點(1,3)和點(4,6).
(1)求k和b;
(2)畫出這個一次函數(shù)的圖象;
(3)若圖象上有一點P到x軸的距離為4,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)y=kx+b的圖象經(jīng)過點M(-1,1)及點N(0,2),設(shè)該圖象與x軸交于點A,與y軸交于點B,問:在x軸上是否存在點P,使ABP為等腰三角形?若存在,把符合條件的點P的坐標都求出來;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖.直線AB值對應(yīng)的函數(shù)解析式是(  )
A.y=-
3
2
x+3
B.y=
3
2
x+3
C.y=-
2
3
x+3
D.y=
2
3
x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一次函數(shù)y=kx+4的圖象經(jīng)過點(-3,-2).
(1)求這個函數(shù)表達式;
(2)畫出該函數(shù)的圖象;
(3)判斷(-5,3)是否在此函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有六個學(xué)生分成甲、乙兩組(每組三個人),分乘兩輛出租車同時從學(xué)校出發(fā)去距學(xué)校60km的博物館參觀,10分鐘后到達距離學(xué)校12km處有一輛汽車出現(xiàn)故障,接著正常行駛的一輛車先把第一批學(xué)生送到博物館再回頭接第二批學(xué)生,同時第二批學(xué)生步行12km后停下休息10分鐘恰好與回頭接他們的小汽車相遇,當?shù)诙鷮W(xué)生到達博物館時,恰好已到原計劃時間、設(shè)汽車載人和空載時的速度不變,學(xué)生步行速度不變,汽車離開學(xué)校的路程s(千米)與汽車行駛時間t(分鐘)之間的函數(shù)關(guān)系如圖,假設(shè)學(xué)生上下車時間忽略不計,
(1)原計劃從學(xué)校出發(fā)到達博物館的時間是______分鐘;
(2)求汽車在回頭接第二批學(xué)生途中的速度;
(3)假設(shè)學(xué)生在步行途中不休息且步行速度每分鐘減小0.04km,汽車載人時和空載時速度不變,問能否經(jīng)過合理的安排,使得學(xué)生從學(xué)校出發(fā)全部到達目的地的時間比原計劃時間早10分鐘?如果能,請簡要說出方案,并通過計算說明;如果不能,簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,直角梯形OABC的下底邊OA在x軸的負半軸上,CBOA,點B的坐標為(-
10
3
,4),OA=
3
2
CB.
(1)求直線AB的解析式;
(2)點P從點C出發(fā),以每秒1個單位的速度沿射線CB運動,連接PA,設(shè)點P的運動時間為t秒.設(shè)△PAB的面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)在(2)的條件下,當t為何值時,以PA為底△PAB是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某縣為了打造梨鄉(xiāng)水城,發(fā)展旅游業(yè),從2008年開始擴大梨樹種植面積,梨樹種植面積y(百畝)與時間x(年)之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式;(不必寫自變量x的取值范圍)
(2)求該縣2012年梨樹的種植面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線l1:y=
2
3
x+
8
3
與直線l2:y=-2x+16相交于點C,l1、l2分別交x軸于A、B兩點.矩形DEFG的頂點D、E分別在直線l1、l2上,頂點F、G都在x軸上,且點G與點B重合.
(1)求△ABC的面積;
(2)求矩形DEFG的邊DE與EF的長;
(3)若矩形DEFG沿x軸的反方向以每秒1個單位長度的速度平移,設(shè)移動時間為t(0≤t≤12)秒,矩形DEFG與△ABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并寫出相應(yīng)的t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案