(2011•南京)如圖,過正五邊形ABCDE的頂點A作直線l∥CD,則∠1= 
36°
∵l∥CD,正五邊形ABCDE,
∴∠1=∠2,
∠BAE=540°÷5=108°,
∴∠1=∠2=180°﹣∠BAE,
即2∠1=180°﹣108°,
∴∠1=36°.
故答案為:36°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖是由一些大小相同的小正方體組成的幾何體的三視圖,則組成該幾何體的小正方體的個數(shù)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,圓O圖形中,共有圓弧的條數(shù)( 。
A.3條B.4條C.5條D.6條

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

下列四種說法:
①若一個三角形三個內(nèi)角的度數(shù)比為2∶3∶4,則這個三角形是銳角三角形;
②“擲兩枚質(zhì)地均勻的正方體骰子點數(shù)之和一定大于6”是必然事件;
③購買一張彩票可能中獎;
④已知等腰三角形的一個內(nèi)角為40°,則這個等腰三角形的頂角為100°其中正確的序號是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011貴州六盤水,25,16分)如圖10所示,Rt△ABC是一張放在平面直角坐標(biāo)系中的紙片,點C與原點O重合,點A在x軸的正半軸上,點B在y軸的正半軸上,已知OA=3,OB=4。將紙片的直角部分翻折,使點C落在AB邊上,記為D點,AE為折痕,E在y軸上。
(1)在圖10所示的直角坐標(biāo)系中,求E點的坐標(biāo)及AE的長。
(2)線段AD上有一動點P(不與A、D重合)自A點沿AD方向以每秒1個單位長度向D點作勻速運(yùn)動,設(shè)運(yùn)動時間為t秒(0<t<3),過P點作PM∥DE交AE于M點,過點M作MN∥AD交DE于N點,求四邊形PMND的面積S與時間t之間的函數(shù)關(guān)系式,當(dāng)t取何值時,S有最大值?最大值是多少?
(3)當(dāng)t(0<t<3)為何值時,A、D、M三點構(gòu)成等腰三角形?并求出點M的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果一個扇形的弧長等于它的半徑,那么此扇形稱為“等邊扇形”. 則半徑為2的“等邊扇形”的面積為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)如圖,四邊形ABCD是正方形,△ABE是等邊三角形,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM.

⑴ 求證:△AMB≌△ENB;
⑵ ①當(dāng)M點在何處時,AM+CM的值最;
②當(dāng)M點在何處時,AM+BM+CM的值最小,并說明理由;
⑶ 當(dāng)AM+BM+CM的最小值為時,求正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖,過A(8,0)、B(0,)兩點的直線與直線交于點C.平行于軸的直線從原點O出發(fā),以每秒1個單位長度的速度沿軸向右平移,到C點時停止;分別交線段BC、OC于點D、E,以DE為邊向左側(cè)作等邊△DEF,設(shè)△DEF與△BCO重疊部分的面積為S(平方單位),直線的運(yùn)動時間為t(秒).
(1)直接寫出C點坐標(biāo)和t的取值范圍;  
(2)求S與t的函數(shù)關(guān)系式;
(3)設(shè)直線軸交于點P,是否存在這樣的點P,使得以P、O、F為頂點的三角形為等腰三角形,若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖中,不可能圍成正方體的是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案