【題目】解不等式與不等式組:

1)解不等式,并把它的解集在數(shù)軸上表示出來;

2)解不等式組并求出它的所有整數(shù)解

【答案】1,數(shù)軸見解析;(2,整數(shù)解01,23

【解析】

1)根據(jù)解一元一次不等式基本步驟:去分母、去括號(hào)、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1可得.

2)分別求出每一個(gè)不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集,繼而可得其整數(shù)解.

解:(1)去分母,得

去括號(hào),得

移項(xiàng),得

合并同類項(xiàng),得

兩邊都除以,得

這個(gè)不等式的解集在在數(shù)軸上表示如圖所示

2)解不等式,得

解不等式,得

在同一數(shù)軸上表示不等式①②的解集,

如圖所示:

所以,不等式組的解集是:

該不等式組的所有整數(shù)解為0,12,3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家電商場(chǎng)計(jì)劃用9萬元從生產(chǎn)廠家購進(jìn)50臺(tái)電視機(jī).已知該廠家生產(chǎn)3種不同型號(hào)的電視機(jī),出廠價(jià)分別為A種每臺(tái)1500元,B種每臺(tái)2100元,C種每臺(tái)2500元.
(1)若家電商場(chǎng)同時(shí)購進(jìn)兩種不同型號(hào)的電視機(jī)共50臺(tái),用去9萬元,請(qǐng)你研究一下商場(chǎng)的進(jìn)貨方案;
(2)若商場(chǎng)銷售一臺(tái)A種電視機(jī)可獲利150元,銷售一臺(tái)B種電視機(jī)可獲利200元,銷售一臺(tái)C種電視機(jī)可獲利250元,在同時(shí)購進(jìn)兩種不同型號(hào)的電視機(jī)方案中,為了使銷售時(shí)獲利最多,你選擇哪種方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是O的直徑,弦ACOD.

(1)求證:

(2)若的度數(shù)為,求AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)P以每秒2㎝的速度沿圖甲的邊框按從的路徑移動(dòng),相應(yīng)的ABP的面積S關(guān)于時(shí)間t的函數(shù)圖象如圖乙.若AB=6,試回答下列問題:

(1)圖甲中的BC長(zhǎng)是多少?

(2)圖乙中的a是多少?

(3)圖甲中的圖形面積的多少?

(4)圖的b是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC經(jīng)過平移得到的△A′B′C′,△ABC中任意一點(diǎn)P(x1,y1)平移后的對(duì)應(yīng)點(diǎn)為P′(x1+6,y1+4)。

(1)請(qǐng)?jiān)趫D中作出△A′B′C′;(2)寫出點(diǎn)A′、B′、C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了參加中考體育測(cè)試,甲、乙、丙三位同學(xué)進(jìn)行足球傳球訓(xùn)練,球從一個(gè)人腳下隨機(jī)傳到另一個(gè)人腳下,且每位傳球人傳給其余兩人的機(jī)會(huì)是均等的,由甲開始傳球,共傳球三次.

1)請(qǐng)利用樹狀圖列舉出三次傳球的所有可能情況;

2)求三次傳球后,球回到甲腳下的概率;

3)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每個(gè)小正方形的邊長(zhǎng)都相等,三角形ABC的三個(gè)頂點(diǎn)都在格點(diǎn)(小正方形的頂點(diǎn))上.

1)平移三角形ABC,使頂點(diǎn)A平移到點(diǎn)D的位置,得到三角形DEF,請(qǐng)?jiān)趫D中畫出三角形DEF;(注:點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E

2)若∠A50°,則直線AC與直線DE相交所得銳角的度數(shù)為   °,依據(jù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)EAB上,點(diǎn)DBC上,BD=BE,∠BAD=∠BCE,ADCE相交于點(diǎn)F,試判斷△AFC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中剪去一個(gè)邊長(zhǎng)為1的小正方形CEFG,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運(yùn)動(dòng)到點(diǎn)B時(shí)停止(不含點(diǎn)A和點(diǎn)B),則ABP的面積S隨著時(shí)間t變化的函數(shù)圖象大致是( 。

A.

B.

C.

D.

查看答案和解析>>

同步練習(xí)冊(cè)答案