精英家教網(wǎng)如圖,在△ABC中,AB=AC,點D、E、F分別在AB、BC、AC上,且BD=CE,BE=CF.
(1)求證:△DEF是等腰三角形;
(2)猜想:當∠A滿足什么條件時,△DEF是等邊三角形?并說明理由.
分析:(1)首先根據(jù)條件證明△DBE≌△ECF,根據(jù)全等三角形的性質(zhì)可得DE=FE,進而可得到△DEF是等腰三角形;
(2)∠A=60°時,△DEF是等邊三角形,首先根據(jù)△DBE≌△ECF,再證明∠DEF=60°,可以證出結論.
解答:(1)證明:∵AB=AC,
∴∠B=∠C,
在△DBE和△ECF中,
BD=CE
∠B=∠C
BE=CF

∴△DBE≌△ECF,
∴DE=FE,
∴△DEF是等腰三角形;

(2)當∠A=60°時,△DEF是等邊三角形,精英家教網(wǎng)
理由:∵△BDE≌△CEF,
∴∠FEC=∠BDE,
∴∠DEF=180°-∠BED-∠EFC=180°-∠DEB-∠EDB=∠B
要△DEF是等邊三角形,只要∠DEF=60°.
所以,當∠A=60度時,∠B=∠DEF=60,
則△DEF是等邊三角形.
點評:此題主要考查了等腰三角形的判定,等邊三角形的判定,關鍵是證明△DBE≌△ECF.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案