【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過(guò)45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.

(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?

(2)能否使所圍矩形場(chǎng)地的面積為810m2 ,為什么?

【答案】1)當(dāng)所圍矩形的長(zhǎng)為30m、寬為25m時(shí),能使矩形的面積為750m22)不能

【解析】試題分析:(1)設(shè)所圍矩形ABCD的長(zhǎng)ABx米,則寬AD80-x)米,根據(jù)矩形面積的計(jì)算方法列出方程求解;

2)假使矩形面積為810,則x無(wú)實(shí)數(shù)根,所以不能?chē)删匦螆?chǎng)地.

試題解析:解:(1)設(shè)所圍矩形ABCD的長(zhǎng)ABx米,則寬AD80-x)米.

依題意,得x80-x=750,即,x2-80x+1500=0

解此方程,得x1=30x2=50

墻的長(zhǎng)度不超過(guò)45m,∴x2=50不合題意,應(yīng)舍去(4分).

當(dāng)x=30時(shí),(80-x=×80-30=25,

所以,當(dāng)所圍矩形的長(zhǎng)為30m、寬為25m時(shí),能使矩形的面積為750m2;

2)不能.

因?yàn)橛?/span>x80-x=810x2-80x+1620=0,

∵b2-4ac=-802-4×1×1620=-800,

上述方程沒(méi)有實(shí)數(shù)根.

因此,不能使所圍矩形場(chǎng)地的面積為810m2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是坐標(biāo)原點(diǎn),直線OA與雙曲線在第一象限內(nèi)交于點(diǎn)A,過(guò)點(diǎn)AABx軸,垂足為B,若OB=4,tanAOB=

1)求雙曲線的解析式;

2)直線ACy軸交于點(diǎn)C01),與x軸交于點(diǎn)D,求D點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷(xiāo)售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷(xiāo)售過(guò)程中發(fā)現(xiàn),每月銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):

(1)設(shè)李明每月獲得利潤(rùn)為w(元),當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?

(2)如果李明想要每月獲得2000元的利潤(rùn),那么銷(xiāo)售單價(jià)應(yīng)定為多少元?

(3)根據(jù)物價(jià)部門(mén)規(guī)定,這種護(hù)眼臺(tái)燈的銷(xiāo)售單價(jià)不得高于32元,如果李明想要每月獲得的利潤(rùn)不低于2000元,那么他每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷(xiāo)售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一坐標(biāo)系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣舉辦老、中、青三個(gè)年齡段五公里競(jìng)走活動(dòng),其人數(shù)比為,如圖所示的扇形統(tǒng)計(jì)圖表示 上述分布情況,已知老人有人,則下列說(shuō)法不正確的是( )

A. 老年所占區(qū)域的圓心角是B. 參加活動(dòng)的總?cè)藬?shù)是

C. 中年人比老年人多D. 老年人比青年人少

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,動(dòng)點(diǎn)P按圖中箭頭所示方向從原點(diǎn)出發(fā),1次運(yùn)動(dòng)到P1(1,1),2次接著運(yùn)動(dòng)到點(diǎn)P2(2,0),第3次接著運(yùn)動(dòng)到點(diǎn)P3(3,-2),,按這的運(yùn)動(dòng)規(guī)律,點(diǎn)P2019的坐標(biāo)是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先列表然后在同一平面直角坐標(biāo)系內(nèi)分別描點(diǎn)畫(huà)出下列二次函數(shù)的圖象,并寫(xiě)出對(duì)稱(chēng)軸與頂點(diǎn)坐標(biāo).

①y=- (x+2)2;②y=- (x-1)2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果二次函數(shù)的二次項(xiàng)系數(shù)為1,那么此二次函數(shù)可表示為y=x2+px+q,我們稱(chēng)[p,q]為此函數(shù)的特征數(shù),如函數(shù)y=x2+2x+3的特征數(shù)是[2,3].

(1)若一個(gè)函數(shù)的特征數(shù)為[-2,1],求此函數(shù)圖象的頂點(diǎn)坐標(biāo);

(2)探究下列問(wèn)題:

若一個(gè)函數(shù)的特征數(shù)為[4,-1],將此函數(shù)的圖象先向右平移1個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,求得到的圖象對(duì)應(yīng)的函數(shù)的特征數(shù);

若一個(gè)函數(shù)的特征數(shù)為[2,3],問(wèn)此函數(shù)的圖象經(jīng)過(guò)怎樣的平移,才能使得到的圖象對(duì)應(yīng)的函數(shù)的特征數(shù)為[3,4]?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的邊長(zhǎng)是2,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)EF分別在邊AD、AB上,且,則四邊形的面積為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案