解:(1)
過(guò)不在同一條直線上的3點(diǎn)一共能作出3條線段,
故答案為:3;
(2)
過(guò)任何三點(diǎn)都不在一條直線上4點(diǎn)的線段有6條;
故答案為:6;
(3)根據(jù)過(guò)兩點(diǎn)的線段有1條,過(guò)不在同一直線上的三點(diǎn)的線段有3條,過(guò)任何三點(diǎn)都不在一條直線上4點(diǎn)的線段有6條,
所以平面內(nèi)任意三個(gè)點(diǎn)都不在同一直線上,平面內(nèi)有n個(gè)點(diǎn),一共可以畫(huà)線段的條數(shù)為
.
故答案為:
;
(4)順次連接不在同一直線上的三個(gè)點(diǎn)可作1個(gè)三角形;當(dāng)有4個(gè)點(diǎn)時(shí),可作4個(gè)三角形;當(dāng)有5個(gè)點(diǎn)時(shí),可作10個(gè)三角形;依此類(lèi)推當(dāng)有n個(gè)點(diǎn)時(shí),
可作
個(gè)三角形.
故答案為:
.
分析:(1)根據(jù)過(guò)兩點(diǎn)有且只有一條直線,即兩點(diǎn)確定一條直線.同一平面內(nèi)不在同一直線上的3個(gè)點(diǎn),可畫(huà)3條直線,所以能作出3條不同的線段;
(2)由(1)得到過(guò)任何三點(diǎn)都不在一條直線上四點(diǎn)的直線有6條;
(3)根據(jù)過(guò)兩點(diǎn)的直線有1條,過(guò)不在同一直線上的三點(diǎn)的直線有3條,過(guò)任何三點(diǎn)都不在一條直線上四點(diǎn)的直線有6條,按此規(guī)律,由特殊到一般,總結(jié)出公式:平面內(nèi)任意三個(gè)點(diǎn)都不在同一直線上,平面內(nèi)有n個(gè)點(diǎn),一共可以畫(huà)直線的條數(shù)為
.
(4)順次連接不在同一直線上的三個(gè)點(diǎn)可作1個(gè)三角形;當(dāng)有4個(gè)點(diǎn)時(shí),可作4個(gè)三角形;當(dāng)有5個(gè)點(diǎn)時(shí),可作10個(gè)三角形;依此類(lèi)推當(dāng)有n個(gè)點(diǎn)時(shí),可作
個(gè)三角形.
點(diǎn)評(píng):此題考查的知識(shí)點(diǎn)是圖形數(shù)字的變化類(lèi)問(wèn)題,是一道找規(guī)律的題目,這類(lèi)題型在中考中經(jīng)常出現(xiàn).對(duì)于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.