【題目】某醫(yī)藥研究所開發(fā)一種新藥,在做藥效試驗時發(fā)現(xiàn),如果成人按規(guī)定劑量服用,那么服藥后,每毫升血液中含藥量y(μg)隨時間t(h)的變化圖象如圖所示,根據(jù)圖象回答:

(1)服藥后幾時血液中含藥量最高?每毫升血液中含多少微克?

(2)在服藥幾時內(nèi),每毫升血液中含藥量逐漸升高?在服藥幾時后,每毫升血液中含藥量逐漸下降?

(3)服藥后14 h時,每毫升血液中含藥量是多少微克?

(4)如果每毫升血液中含藥量為4微克及以上時,治療疾病有效,那么有效時間為幾時?

【答案】(1)服藥后2h血液中含藥量最高,每毫升血液中含6μg.;(2)在服藥2h內(nèi),每毫升血液中含藥量逐漸升高,在服藥2h后,每毫升血液中含藥量逐漸下降;(3)2μg;(4)h

【解析】

仔細(xì)觀察圖象即可得到(1)、(2)、(3)的結(jié)果,找到每毫升血液中含藥量為4微克及以上時所對應(yīng)的時間段,有效時間為兩者之差,即可得出(4)的答案.

1)由圖象可知,服藥后2h血液中含藥量最高,達(dá)到每毫升血液中含藥6μg

2)由圖象可知,在服藥2h之內(nèi),血液中含藥量逐漸升高;在2h之后,血液中含藥量逐漸衰減;

3)由圖象可知,服藥后14h,每毫升血液中含藥量是2μg

4)每毫升血液中含藥量為4μg及以上時,所處的時間段為h~8h,

故有效時間為:8=(h).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年512日是我國第11個全國防災(zāi)減災(zāi)日,重慶某中學(xué)為普及推廣全民防災(zāi)減災(zāi)知識和避災(zāi)自救技能,開展了提高災(zāi)害防治能力,構(gòu)筑生命安全防線知識競賽活動.初一、初二年級各500人,為了調(diào)查競賽情況,學(xué)校進(jìn)行了抽樣調(diào)查,過程如下,請根據(jù)表格回答問題.

收集數(shù)據(jù):

從初一、初二年級各抽取20名同學(xué)的測試成績(單位:分),記錄如下:

初一:68、79100、98、98、86、88、99、100、9390、100、80、7684、9899、8698、90

初二:92、89、100、99、98、94、100、62、10086、75、98、89100、10068、79100、9289

整理數(shù)據(jù):

表一

分?jǐn)?shù)段

初一人數(shù)

1

12

初二人數(shù)

2

2

4

12

分析數(shù)據(jù):

表二

種類

平均數(shù)

中位數(shù)

眾數(shù)

方差

初一

90.5

91.5

84.75

初二

90.5

100

123.05

得出結(jié)論:

1)在表中:_______,_______,_______,_______

2)得分情況較穩(wěn)定的是___________(填初一或初二);

3)估計該校初一、初二年級學(xué)生本次測試成績中可以得滿分的人數(shù)共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一批貨物要運往某地,貨主準(zhǔn)備租用汽車運輸公司的甲、乙兩種貨車,已知過去兩次租用這種貨車的情況如下表:

現(xiàn)租用該公司3輛甲種貨車及5輛乙種貨車一次剛好運完這批貨,如果按每噸付運費30元計算,貨主應(yīng)付運費多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=CB,以AB為直徑的⊙O交AC于點D,過點C作CF∥AB,在CF上取一點E,使DE=CD,連接AE,對于下列結(jié)論:①AD=DC;②△CBA∽△CDE;③ = ;④AE為⊙O的切線,一定正確的結(jié)論選項是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組開展了一次活動,過程如下:如圖1,等腰直角△ABC中,AB=AC,∠BAC=90°,小敏將三角板中含45°角的頂點放在A上,斜邊從AB邊開始繞點A逆時針旋轉(zhuǎn)一個角α,其中三角板斜邊所在的直線交直線BC于點D,直角邊所在的直線交直線BC于點E.

(1)小敏在線段BC上取一點M,連接AM,旋轉(zhuǎn)中發(fā)現(xiàn):若AD平分∠BAM,則AE也平分∠MAC.請你證明小敏發(fā)現(xiàn)的結(jié)論;
(2)當(dāng)0°<α≤45°時,小敏在旋轉(zhuǎn)中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關(guān)系:BD2+CE2=DE2 . 同組的小穎和小亮隨后想出了兩種不同的方法進(jìn)行解決:
小穎的想法:將△ABD沿AD所在的直線對折得到△ADF,連接EF(如圖2);
小亮的想法:將△ABD繞點A逆時針旋轉(zhuǎn)90°得到△ACG,連接EG(如圖3);
請你從中任選一種方法進(jìn)行證明.
(3)小敏繼續(xù)旋轉(zhuǎn)三角板,請你繼續(xù)研究:當(dāng)135°<α<180°時(如圖4),等量BD2+CE2=DE2是否仍然成立?請作出判斷,不需要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點,與軸交于點,點與點關(guān)于軸對稱.

1)求直線的函數(shù)表達(dá)式;

2)設(shè)點軸上的一個動點,過點軸的平行線,交直線于點,交直線于點,連接

①若,求點的坐標(biāo);

②若的面積為,請直接寫出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖甲,,的關(guān)系是什么?并寫出推理過程;

2)如圖乙,,直接寫出的數(shù)量關(guān)系_______________________;

3)如圖丙,,直接寫出的數(shù)量關(guān)系_____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC, ,AD=6,BC=8, ,點M是BC的中點.點P從點M出發(fā)沿MB以每秒1個單位長的速度向點B勻速運動,到達(dá)點B后立刻以原速度沿BM返回;點Q從點M出發(fā)以每秒1個單位長的速度在射線MC上勻速運動.在點P,Q的運動過程中,以PQ為邊作等邊三角形EPQ,使它與梯形ABCD在射線BC的同側(cè).點P,Q同時出發(fā),當(dāng)點P返回到點M時停止運動,點Q也隨之停止.設(shè)點P,Q運動的時間是t秒(t>0).

(1)設(shè)PQ的長為y,在點P從點M向點B運動的過程中,寫出y與t之間的函數(shù)關(guān)系式(不必寫t的取值范圍).
(2)當(dāng)BP=1時,求△EPQ與梯形ABCD重疊部分的面積.
(3)隨著時間t的變化,線段AD會有一部分被△EPQ覆蓋,被覆蓋線段的長度在某個時刻會達(dá)到最大值,請回答:該最大值能否持續(xù)一個時段?若能,直接寫出t的取值范圍;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車在筆直的公路上行駛,在兩次轉(zhuǎn)彎后,仍在原來的方向上平行前進(jìn),那么這兩次轉(zhuǎn)彎的角度可以是(

A. 先右轉(zhuǎn)80o,再左轉(zhuǎn)100 oB. 先左轉(zhuǎn)80 o ,再右轉(zhuǎn)80 o

C. 先左轉(zhuǎn)80 o ,再左轉(zhuǎn)100 oD. 先右轉(zhuǎn)80 o,再右轉(zhuǎn)80

查看答案和解析>>

同步練習(xí)冊答案