【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E.
(1)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖1的位置時,求證:DE=AD+BE;
(2)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖2的位置時,(1)中的結(jié)論還成立嗎?若成立,請給出證明;若不成立,請寫出新的結(jié)論并說明理由.
【答案】(1)證明見解析;(2)DE=AC-BE
【解析】試題分析:(1)利用等腰直角三角形,AC=BC,再利用AAS得到△ADC和△CEB全等, DE=DC+CE=AD+BE.
(2)利用等腰三角形得AC=BC,互余角性質(zhì)得∠BCE=∠MAD,最后利用AAS得到△ADC和△CEB全等,DE=EC-CD=AD-BE.
試題解析:
證明:(1)∵AD⊥DE,BE⊥DE,
∴∠ADC=∠BEC=90°,
∵∠ACB=90°,
∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,
∴∠DAC=∠BCE,
在△ADC和△CEB中
,
∴△ADC≌△CEB(AAS),
∴AD=CE,CD=BE,
∵DC+CE=DE,
∴AD+BE=DE.
(2)DE=AD-BE,
理由:∵BE⊥EC,AD⊥CE,
∴∠ADC=∠BEC=90°,
∴∠EBC+∠ECB=90°,
∵∠ACB=90°,
∴∠ECB+∠ACE=90°,
∴∠ACD=∠EBC,
在△ADC和△CEB中,
,
∴△ADC≌△CEB(AAS),
∴AD=CE,CD=BE,
∴DE=EC-CD=AD-BE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是某校八年級(1)班43名學(xué)生右眼視力的檢查結(jié)果.
(1)該班學(xué)生右眼視力的平均數(shù)是________(結(jié)果保留1位小數(shù)).
(2)該班學(xué)生右眼視力的中位數(shù)是________.
(3)該班小鳴同學(xué)右眼視力是4.5,能不能說小鳴同學(xué)的右眼視力處于全班同學(xué)的中上水平?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種花瓣的花粉顆粒直徑約為0.0000065米,將數(shù)據(jù)0.0000065用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)統(tǒng)計,參加“崇左市2015年初中畢業(yè)升學(xué)考試”的人數(shù)用科學(xué)記數(shù)法表示為1.47×104人,則原來的人數(shù)是 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個樣本數(shù)據(jù)按從小到大的順序的排順列為13、14、19、x、23、27、28、31,其中位數(shù)為22,則x等于( )
A. 21 B. 22 C. 20 D. 23
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com