(2013•天水)如圖所示,在天水至寶雞(天寶)高速公路建設中需要確定某條隧道AB的長度,已知在離地面2700米高度C處的飛機上,測量人員測得正前方AB兩點處的俯角分別是60°和30°,求隧道AB的長.(結果保留根號)
分析:易得∠CAO=60°,∠CBO=30°,利用相應的正切值可得AO,BO的長,相減即可得到AB的長.
解答:解:由題意得∠CAO=60°,∠CBO=30°,
∵OA=2700×tan30°=2700×
3
3
=900
3
m,OB=2700×tan60°=2700
3
m,
∴AB=2700
3
-900
3
=1800
3
(m).
答:隧道AB的長為1800
3
m.
點評:考查解直角三角形的應用;利用三角函數(shù)值得到與所求線段相關線段的長度是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•天水)如圖所示,在△ABC中,BC=4,以點A為圓心,2為半徑的⊙A與BC相切于點D,交AB于點E,交AC于點F,且∠EAF=80°,則圖中陰影部分的面積是
4-
8
9
π
4-
8
9
π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•天水)如圖,在四邊形ABCD中,對角線AC,BD交于點E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=
2
,BE=2
2
.求CD的長和四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•天水)如圖在平面直角坐標系xOy中,函數(shù)y=
4x
(x>0)的圖象與一次函數(shù)y=kx-k的圖象的交點為A(m,2).
(1)求一次函數(shù)的解析式;
(2)設一次函數(shù)y=kx-k的圖象與y軸交于點B,若點P是x軸上一點,且滿足△PAB的面積是4,直接寫出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•天水)如圖1,已知拋物線y=ax2+bx(a≠0)經過A(3,0)、B(4,4)兩點.
(1)求拋物線的解析式;
(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個公共點D,求m的值及點D的坐標;
(3)如圖2,若點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿足△POD∽△NOB的點P坐標(點P、O、D分別與點N、O、B對應).

查看答案和解析>>

同步練習冊答案