【題目】如圖1,在ABC中,∠B60°,點(diǎn)M從點(diǎn)B出發(fā)沿射線(xiàn)BC方向,在射線(xiàn)BC上運(yùn)動(dòng).在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,連結(jié)AM,并以AM為邊在射線(xiàn)BC上方,作等邊AMN,連結(jié)CN

1)當(dāng)∠BAM   °時(shí),AB2BM;

2)請(qǐng)?zhí)砑右粋(gè)條件:   ,使得ABC為等邊三角形;

①如圖1,當(dāng)ABC為等邊三角形時(shí),求證:CN+CMAC

②如圖2,當(dāng)點(diǎn)M運(yùn)動(dòng)到線(xiàn)段BC之外(即點(diǎn)M在線(xiàn)段BC的延長(zhǎng)線(xiàn)上時(shí)),其它條件不變(ABC仍為等邊三角形),請(qǐng)寫(xiě)出此時(shí)線(xiàn)段CN、CM、AC滿(mǎn)足的數(shù)量關(guān)系,并證明.

【答案】130;(2ABAC;①證明見(jiàn)解析;②CN-CM=AC,理由見(jiàn)解析

【解析】

1)根據(jù)含30°角的直角三角形的性質(zhì)解答即可;

2)利用含一個(gè)60°角的等腰三角形是等邊三角形的判定解答;①利用等邊三角形的性質(zhì)和全等三角形的判定證明BAM≌△CAN,從而利用全等三角形的性質(zhì)求解;②利用等邊三角形的性質(zhì)和全等三角形的判定證明BAM≌△CAN,從而利用全等三角形的性質(zhì)求解.

解:(1)當(dāng)∠BAM30°時(shí),

∴∠AMB180°60°30°90°,

AB2BM;

故答案為:30;

2)∵在ABC中,∠B=60°

∴當(dāng)AB=AC時(shí),可得可得ABC為等邊三角形;

故答案為:ABAC;

①如圖1中,

∵△ABCAMN是等邊三角形,

ABAC=BC,AMAN,∠BAC=∠MAN60°,

∴∠BAC﹣∠MAC=∠MAN﹣∠MAC,

即∠BAM=∠CAN,

BAMCAN中, ,

∴△BAM≌△CANSAS),

BMCN;

AC=BC=BM+CM=CM+CN

CN+CMAC;

CN-CM=AC

理由:如圖2中,

∵△ABC與△AMN是等邊三角形,

ABAC,AMAN,∠BAC=∠MAN60°,

∴∠BAC+MAC=∠MAN+MAC,

即∠BAM=∠CAN,

在△BAM與△CAN中,

∴△BAM≌△CANSAS),

BMCN

AC=BC=BM-CM=CN-CM

CN-CM=AC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,,,B,E,C在一條直線(xiàn)上下列結(jié)論:的平分線(xiàn);;;線(xiàn)段DE的中線(xiàn);其中正確的有 ()個(gè).

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為積極響應(yīng)新舊動(dòng)能轉(zhuǎn)換.提高公司經(jīng)濟(jì)效益.某科技公司近期研發(fā)出一種新型高科技設(shè)備,每臺(tái)設(shè)備成本價(jià)為30萬(wàn)元,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),每臺(tái)售價(jià)為40萬(wàn)元時(shí),年銷(xiāo)售量為600臺(tái);每臺(tái)售價(jià)為45萬(wàn)元時(shí),年銷(xiāo)售量為550臺(tái).假定該設(shè)備的年銷(xiāo)售量y(單位:臺(tái))和銷(xiāo)售單價(jià)(單位:萬(wàn)元)成一次函數(shù)關(guān)系.

(1)求年銷(xiāo)售量與銷(xiāo)售單價(jià)的函數(shù)關(guān)系式;

(2)根據(jù)相關(guān)規(guī)定,此設(shè)備的銷(xiāo)售單價(jià)不得高于70萬(wàn)元,如果該公司想獲得10000萬(wàn)元的年利潤(rùn).則該設(shè)備的銷(xiāo)售單價(jià)應(yīng)是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB90°DAB上一點(diǎn),過(guò)D點(diǎn)作AB垂線(xiàn),交ACE,交BC的延長(zhǎng)線(xiàn)于F

1)∠1與∠B有什么關(guān)系?說(shuō)明理由.

2)若BCBD,請(qǐng)你探索ABFB的數(shù)量關(guān)系,并且說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,點(diǎn)B、F、C、E在同一直線(xiàn)上,AC、DF相交于點(diǎn)G,ABBE,垂足為B,DEBE,垂足為E,且AC=DF,BF=EC.求證:

(1)ABC≌△DEF;

(2)FG=CG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】本題10分閱讀材料:分解因式:

解:

=

=

=

=

=,

此種方法抓住了二次項(xiàng)和一次項(xiàng)的特點(diǎn),然后加一項(xiàng),使三項(xiàng)成為完全平方式,我們把這種分解因式的方法叫配方法

1用上述方法分解因式:;

2無(wú)論取何值,代數(shù)式總有一個(gè)最小值,請(qǐng)嘗試用配方法求出當(dāng)取何值時(shí)代數(shù)式的值最小,并求出這個(gè)最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面一元二次方程的解法中,正確的是(

A. (x-3)(x-5)=10×2,x-3=10,x-5=2,x1=13,x2=7

B. (2-5x)+(5x-2)2=0,(5x-2)(5x-3)=0,x1=,x2=

C. (x+2)2+4x=0,x1=2,x2=-2

D. x2=x 兩邊同除以x,得x=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的網(wǎng)格中有四條線(xiàn)段ABCD、EF、GH(線(xiàn)段端點(diǎn)在格點(diǎn)上),

選取其中三條線(xiàn)段,使得這三條線(xiàn)段能?chē)梢粋(gè)直角三角形.

答:選取的三條線(xiàn)段為

只變動(dòng)其中兩條線(xiàn)段的位置,在原圖中畫(huà)出一個(gè)滿(mǎn)足上題的直角三角形(頂點(diǎn)仍在格點(diǎn),并標(biāo)上必要的字母).

答:畫(huà)出的直角三角形為△

所畫(huà)直角三角形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過(guò)對(duì)角線(xiàn)BD中點(diǎn)O的直線(xiàn)分別交AB、CD邊于點(diǎn)E、F.

(1)求證:四邊形BEDF是平行四邊形;

(2)求證:△ADE≌△CBF;

(3)當(dāng)四邊形BEDF是菱形時(shí),直接寫(xiě)出線(xiàn)段EF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案