【題目】如圖,在平行四邊形ABCD中,點E在BC邊上,且CE:BC=2:3,AC與DE相交于點F,若SAFD=9,則SEFC=

【答案】4
【解析】解:∵四邊形ABCD是平行四邊形, ∴BC∥AD、BC=AD,
而CE:BC=2:3,
∴△AFD∽△CFE,且它們的相似比為3:2,
∴SAFD:SEFC=( 2 ,
而SAFD=9,
∴SEFC=4.
所以答案是:4.
【考點精析】掌握平行四邊形的性質(zhì)和相似三角形的判定與性質(zhì)是解答本題的根本,需要知道平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,∠A=60°,AB=4 ,點P在菱形內(nèi),若PB=PD=4,則∠PDC的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線MN與⊙O相切于點M,ME=EF且EF∥MN,則cos∠E=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明晚上由路燈A下的點B處走到點C處時,測得自身影子CD的長為1米,他繼續(xù)往前走3米到達(dá)點E處(即CE=3米),測得自己影子EF的長為2米,已知小明的身高是1.5米,那么路燈A的高度AB是(
A.4.5米
B.6米
C.7.2米
D.8米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知直線y=x+4與x軸、y軸分別相交于點A和點C,拋物線y=x2+kx+k﹣1圖象過點A和點C,拋物線與x軸的另一交點是B,

(1)求出此拋物線的解析式、對稱軸以及B點坐標(biāo);
(2)若在y軸負(fù)半軸上存在點D,能使得以A、C、D為頂點的三角形與△ABC相似,請求出點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,點E在BC邊上,AE與BD交于點F,∠BAE=∠DBC.
(1)求證:△ABE∽△BCD;
(2)求tan∠DBC的值;
(3)求線段BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寫出下列命題的已知、求證,并完成證明過程.
(1)命題:如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等(簡稱:“等角對等邊”).

已知:如圖,
求證:
(2)證明命題

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)的發(fā)展,互聯(lián)網(wǎng)消費逐漸深入人們的生活,如圖所示的是“滴滴順風(fēng)車”與“滴滴快車”的行駛里程x(公里)與計費y(元)之間的函數(shù)關(guān)系圖象,有下列說法:其中正確說法的個數(shù)有( ) ①“快車”行駛里程不超過5公里計費8元;
②“順風(fēng)車”行駛里程超過2公里的部分,每公里計費1.2元;
③A點的坐標(biāo)為(6.5,10.4);
④從合肥西站到會展中心的里程是15公里,則“順風(fēng)車”要比“快車”少用3.4元.

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,物理教師為同學(xué)們演示單擺運動,單擺左右擺動中,在OA的位置時俯角∠EOA=30°,在OB的位置時俯角∠FOB=60°,若OC⊥EF,點A比點B高7cm.求:

(1)單擺的長度( ≈1.7);
(2)從點A擺動到點B經(jīng)過的路徑長(π≈3.1).

查看答案和解析>>

同步練習(xí)冊答案