精英家教網(wǎng)如圖,有一座拋物線形的拱橋,橋下的正常水位為OA,此時水面寬為40米,水面離橋的最大高度為16米,則拱橋所在的拋物線的解析式為
 
分析:首先取水面離橋的最大高度的點C,過C作CD⊥AO于D,由垂徑定理即可求得OD的長,繼而求得頂點C與A的坐標,然后設拱橋所在的拋物線的解析式為:y=a(x-20)2+16,利用待定系數(shù)法即可求得拱橋所在的拋物線的解析式.
解答:精英家教網(wǎng)解:取水面離橋的最大高度的點C,過C作CD⊥AO于D,
則OD=AD=
1
2
OA=
1
2
×40=20(米),
∴點C的坐標為(20,16),點A的坐標為(40,0),
設拱橋所在的拋物線的解析式為:y=a(x-20)2+16,
將點A代入得:400a+16=0,
解得:a=-
1
25
,
∴拱橋所在的拋物線的解析式為:y=-
1
25
(x-20)2+16.
故答案為:y=-
1
25
(x-20)2+16.
點評:本題考查的是二次函數(shù)在實際生活中的應用.此題難度不大,解題的關鍵是理解題意,然后根據(jù)題意求得函數(shù)解析式,注意待定系數(shù)法的應用,注意數(shù)形結(jié)合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,有一座拋物線形拱橋,在正常水位時水面AB的寬為20m,如果水位上升3m時,水面CD的寬是10m.精英家教網(wǎng)
(1)建立如圖所示的直角坐標系,求此拋物線的解析式;
(2)現(xiàn)有一輛載有救援物資的貨車從甲地出發(fā)需經(jīng)過此橋開往乙地,已知甲地距此橋280km(橋長忽略不計).貨車正以每小時40km的速度開往乙地,當行駛1小時時,忽然接到緊急通知:前方連降暴雨,造成水位以每小時0.25m的速度持續(xù)上漲(貨車接到通知時水位在CD處,當水位達到橋拱最高點O時,禁止車輛通行),試問:如果貨車按原來速度行駛,能否安全通過此橋?若能,請說明理由;若不能,要使貨車安全通過此橋,速度應超過每小時多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,有一座拋物線形的拱橋,橋下面處在目前的水位時,水面寬AB=10m,如果水位上升2m,就將達到警戒線CD,這時水面的寬為8m.若洪水到來,水位以每小時0.1m速度上升,經(jīng)過多少小時會達到拱頂?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,有一座拋物線形拱橋,在正常水位時水面AB的寬為20米,如果水位精英家教網(wǎng)上升3米,則水面CD的寬是10米.
(1)建立如圖所示的直角坐標系,求此拋物線的解析式;
(2)當水位在正常水位時,有一艘寬為6米的貨船經(jīng)過這里,船艙上有高出水面3.6米的長方體貨物(貨物與貨船同寬).問:此船能否順利通過這座拱橋?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,有一座拋物線形拱橋,在正常水位時水面AB的寬為20m,如果水位上升3m時,水面CD的寬是1精英家教網(wǎng)0m.建立如圖所示的直角坐標系,則此拋物線的解析式為
 

查看答案和解析>>

同步練習冊答案