14.求證:不論x,y為何值.整式x2y2-4xy+5總為正值.

分析 原式配方后,利用完全平方式大于等于0即可得證.

解答 證明:x2y2-4xy+5=(xy-2)2+1≥1>0,
則不論x,y為何值,整式x2y2-4xy+5總為正值.

點評 此題考查了配方法的應用,熟練掌握完全平方公式是解本題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

4.4,-5,6,-7,8,-9,10…這一排數(shù)有什么規(guī)律?怎么用含n的式子表示?(注意,第一個數(shù)為4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

5.若小明同學擲出的鉛球在場地上砸出一個半徑紙為4cm、深度約為2cm的小坑,則該鉛球的半徑約為5cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.解分式方程:
(1)$\frac{2y}{y-1}$+1=$\frac{3y-1}{y}$;
(2)$\frac{x}{{x}^{2}-4}$-$\frac{1}{x-2}$=-$\frac{2}{x+2}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

9.觀察下列各式:①$\sqrt{1+\frac{1}{3}}$=2$\sqrt{\frac{1}{3}}$,②$\sqrt{2+\frac{1}{4}}$=3$\sqrt{\frac{1}{4}}$;③$\sqrt{3+\frac{1}{5}}$=4$\sqrt{\frac{1}{5}}$,…
(1)請觀察規(guī)律,并寫出第④個等式:$\sqrt{4+\frac{1}{6}}$=5$\sqrt{\frac{1}{6}}$;
(2)請用含n(n≥1)的式子寫出你猜想的規(guī)律:$\sqrt{n+\frac{1}{n+2}}$=(n+1)$\sqrt{\frac{1}{n+2}}$;
(3)請證明(2)中的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

19.分解因式:
(1)4(a+1)2-2(a+1)(a-1)
(2)6xy2-9x2y-y3
(3)(m2+4)2-16m2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

6.計算:sin30°cot260°+$\sqrt{2}$sin45°-°$\frac{tan45°}{\sqrt{3}tan60°}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

3.用配方法解方程:
(1)x2+6x=9;
(2)x2+x-1=0;
(3)2x2-3x-1=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

8.已知-2$\frac{2}{5}$×a=1,那么a的值為( 。
A.$\frac{5}{12}$B.$-\frac{5}{12}$C.$-\frac{12}{5}$D.$\frac{12}{5}$

查看答案和解析>>

同步練習冊答案