【題目】兄弟兩人騎馬進(jìn)城,全程51,馬每小時行12,但只能由一個人騎.哥哥每小時步行5,弟弟每小時步行4.兩人輪換騎馬和步行,騎馬者走過一段距離就下鞍拴馬(下鞍拴馬的時間忽略不計),然后獨自步行,而步行者到達(dá)此地,再上馬前進(jìn).若他們早上800出發(fā),并且同時到達(dá)城門,那么他們到達(dá)的時間是_____.

【答案】15:45或下午3:45

【解析】

設(shè)哥哥步行了x千米,則騎馬行了51-x千米.而弟弟正好相反,步行了51-x千米,騎馬行x千米,依題意,得,解得x=30(千米).所以兩人用的時間同為(小時)=7小時45分.早晨8點動身,下午345分到達(dá).

設(shè)哥哥步行了x千米,列方程得:

解之得

x=30,
(小時)=7小時45分,

早晨8點動身,15:45或下午345分到達(dá).

故答案為:15:45或下午3:45

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P為直徑BA延長線上一點,D為圓上一點,BHPDH,BD恰好平分∠PBH,BH交⊙OC,連接CD,OD

1)求證:PD為⊙O的切線;

2)若CD=2,∠ABD=30°,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,ABC為等邊三角形,點D為直線BC上一動點(點D不與B、C重合).以

AD為邊作菱形ADEF,使DAF=60°,連接CF

如圖1,當(dāng)點D在邊BC上時,

求證:ADB=AFC;請直接判斷結(jié)論AFC=ACBDAC是否成立;

如圖2,當(dāng)點D在邊BC的延長線上時,其他條件不變,結(jié)論AFC=ACBDAC是否成立?請寫出AFC、ACB、DAC之間存在的數(shù)量關(guān)系,并寫出證明過程;

如圖3,當(dāng)點D在邊CB的延長線上時,且點A、F分別在直線BC的異側(cè),其他條件不變,請補(bǔ)全圖形,并直接寫出AFC、ACB、DAC之間存在的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)一種產(chǎn)品,當(dāng)生產(chǎn)數(shù)量至少為20噸,但不超過60噸時,每噸的成本(萬元/噸)與生產(chǎn)數(shù)量(噸)之間是一次函數(shù)關(guān)系,其圖像如圖所示.

1)求出關(guān)于的函數(shù)解析式;

2)如果每噸的成本是4.8萬元,求該產(chǎn)品的生產(chǎn)數(shù)量;

3)當(dāng)生產(chǎn)這種產(chǎn)品的總成本是200萬元時,求該產(chǎn)品的生產(chǎn)數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=﹣x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(shù)(如圖所示),請你在圖中畫出這個新圖象,當(dāng)直線y=﹣x+m與新圖象有4個交點時,m的取值范圍是( 。

A. <m<3 B. <m<2 C. ﹣2<m<3 D. ﹣6<m<﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,直線軸交于點,與軸交于點,經(jīng)過點的拋物線上有一動點,且點在直線的下方.

1)平移直線經(jīng)過點,得到直線,點為直線上一個動點,連接,當(dāng)面積最大時,求的最小值.

2)平移直線經(jīng)過原點,得到直線,點是直線上一點,且點橫坐標(biāo)為6,點軸上,點軸上,當(dāng)時,拋物線上是否存在點,使四邊形是矩形?如果存在,請求出點的坐標(biāo),如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,∠ABC的平分線交⊙O于點D,DEBC于點E.

(1)試判斷DE與⊙O的位置關(guān)系,并說明理由;

(2)過點DDFAB于點F,若BE=3,DF=3,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)yx24的圖象與x軸交于點A、B(點A位于點B的左側(cè)),C為頂點.一次函數(shù)ymx+2的圖象經(jīng)過點A,與y軸交于點D

1)求直線AD的函數(shù)表達(dá)式;

2)平移該拋物線得到一條新拋物線,設(shè)新拋物線的頂點為C.若新拋物線的頂點和原拋物線的頂點的連線CC平行于直線AD,且當(dāng)1≤x≤3時,新拋物線對應(yīng)的函數(shù)值有最小值為﹣1,求新拋物線對應(yīng)的函數(shù)表達(dá)式;

3)如圖,連接AC、BC,在坐標(biāo)平面內(nèi),直接寫出使得ACDEBC相似(其中點A與點E是對應(yīng)點)的點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表顯示了同學(xué)們用計算機(jī)模擬隨機(jī)投針實驗的某次實驗的結(jié)果.

投針次數(shù)n

1000

2000

3000

4000

5000

10000

20000

針與直線相交的次數(shù)m

454

970

1430

1912

2386

4769

9548

針與直線相交的頻率p

0.454

0.485

0.4767

0.478

0.4772

0.4769

0.4774

下面有三個推斷:

①投擲1000次時,針與直線相交的次數(shù)是454,針與直線相交的概率是0.454;

②隨著實驗次數(shù)的增加,針與直線相交的頻率總在0.477附近,顯示出一定的穩(wěn)定性,可以估計針與直線相交的概率是0.477;

③若再次用計算機(jī)模擬此實驗,則當(dāng)投擲次數(shù)為10000時,針與直線相交的頻率一定是0.4769

其中合理的推斷的序號是:_____

查看答案和解析>>

同步練習(xí)冊答案