(2006•邵陽)如圖所示,在⊙O中,AB是⊙O的直徑,∠ACB的角平分線CD交⊙O于D,則∠ABD=    度.
【答案】分析:根據(jù)直徑所對的圓周角是直角,得∠ACB=90°,再根據(jù)等弧所對的圓周角相等即可求解.
解答:解:∵CD平分∠ACB
∴∠ACD=∠BCD=45°
∴∠ABD=∠ACD=45°.
點評:熟練運用圓周角定理及其推論是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2006•邵陽)如圖,若將△ABC繞點O順時針旋轉(zhuǎn)180°后得到△A′B′C′,則A點的對應(yīng)點A′點的坐標(biāo)是
(3,-2)
(3,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2006•邵陽)如圖,已知拋物線y=x2+1,直線y=kx+b經(jīng)過點B(0,2)
(1)求b的值;
(2)將直線y=kx+b繞著點B旋轉(zhuǎn)到與x軸平行的位置時(如圖1),直線與拋物線y=x2+1相交,其中一個交點為P,求出P的坐標(biāo);
(3)將直線y=kx+b繼續(xù)繞著點B旋轉(zhuǎn),與拋物線相交,其中一個交點為P'(如圖②),過點P'作x軸的垂線P'M,點M為垂足.是否存在這樣的點P',使△P'BM為等邊三角形?若存在,請求出點P'的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖南省邵陽市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•邵陽)如圖,已知拋物線y=x2+1,直線y=kx+b經(jīng)過點B(0,2)
(1)求b的值;
(2)將直線y=kx+b繞著點B旋轉(zhuǎn)到與x軸平行的位置時(如圖1),直線與拋物線y=x2+1相交,其中一個交點為P,求出P的坐標(biāo);
(3)將直線y=kx+b繼續(xù)繞著點B旋轉(zhuǎn),與拋物線相交,其中一個交點為P'(如圖②),過點P'作x軸的垂線P'M,點M為垂足.是否存在這樣的點P',使△P'BM為等邊三角形?若存在,請求出點P'的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省梅州市數(shù)學(xué)總復(fù)習(xí)測試卷(7) 四邊形(解析版) 題型:解答題

(2006•邵陽)如圖,在矩形ABCD中,AB=6,BC=8.將矩形ABCD沿CE折疊后,使點D恰好落在對角線AC上的點F處.
(1)求EF的長;
(2)求梯形ABCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖南省邵陽市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:填空題

(2006•邵陽)如圖,若將△ABC繞點O順時針旋轉(zhuǎn)180°后得到△A′B′C′,則A點的對應(yīng)點A′點的坐標(biāo)是   

查看答案和解析>>

同步練習(xí)冊答案