【題目】如圖1是一個用鐵絲圍成的籃框,我們來仿制一個類似的柱體形籃框.如圖2,它是由一個半徑為r、圓心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干個缺一邊的矩形狀框A1C1D1B1、A2C2D2B2、…、AnBnCnDn,OEFG圍成,其中A1、G、B1在上,A2、A3…、An與B2、B3、…Bn分別在半徑OA2和OB2上,C2、C3、…、Cn和D2、D3…Dn分別在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,F(xiàn)H1=H1H2=d,C1D1、C2D2、C3D3、CnDn依次等距離平行排放(最后一個矩形狀框的邊CnDn與點(diǎn)E間的距離應(yīng)不超過d),A1C1∥A2C2∥A3C3∥…∥AnCn.
(1)求d的值;
(2)問:CnDn與點(diǎn)E間的距離能否等于d?如果能,求出這樣的n的值,如果不能,那么它們之間的距離是多少?
【答案】(1);(2)不能,.
【解析】
試題分析:(1)根據(jù)d=FH2,求出EH2即可解決問題.
(2)假設(shè)CnDn與點(diǎn)E間的距離能等于d,列出關(guān)于n的方程求解,發(fā)現(xiàn)n沒有整數(shù)解,由=≈4.8,求出n即可解決問題.
試題解析:(1)在RT△D2EC2中,∵∠D2EC2=90°,EC2=ED2=r,EF⊥C2D2,∴EH1=r,F(xiàn)H1=r﹣r,∴d==;
(2)假設(shè)CnDn與點(diǎn)E間的距離能等于d,由題意,這個方程n沒有整數(shù)解,所以假設(shè)不成立.
∵=≈4.8,∴n=6,此時CnDn與點(diǎn)E間的距離==.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列式子:①-3<0;②4x+5>0;③x=3;④x2+x;⑤x≠-4;⑥x+2>x+1.其中是不等式的有( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P(﹣2,4)關(guān)于坐標(biāo)原點(diǎn)對稱的點(diǎn)的坐標(biāo)為( 。
A. (4,﹣2)B. (﹣4,2)C. (2,4)D. (2,﹣4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從四邊形的一個頂點(diǎn)出發(fā),可得一條對角線;從五邊形的一個頂點(diǎn)出發(fā)可得二條對角線;從六邊形的一個頂點(diǎn)出發(fā)可得三條對角線;…按此規(guī)律,從n(n≥4,且n是整數(shù))邊形的一個頂點(diǎn)出發(fā)可得對角線條.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AD,∠BAD=60°,∠BCD=120°,延長BC,使CE=CD,連接DE,求證:BC+DC=AC.
思路點(diǎn)撥:
(1)由已知條件AB=AD,∠BAD=60°,可知:△ABD是 三角形;
(2)同理由已知條件∠BCD=120°得到∠DCE= ,且CE=CD,可知 ;
(3)要證BC+DC=AC,可將問題轉(zhuǎn)化為兩條線段相等,即 = ;請你先完成思路點(diǎn)撥,再進(jìn)行證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)為加強(qiáng)與家長的溝通,某校在家長會到來之前需印刷《致家長的一封信》等材料以作宣傳,該校的印刷任務(wù)原來由甲復(fù)印店承接,其收費(fèi)y(元)與印刷頁數(shù)x(頁)的函數(shù)關(guān)系如圖所示.
(1)從圖象中可看出:印刷超過500頁部分每頁收費(fèi) 元;
(2)現(xiàn)在乙印刷廠表示:每頁0.15元收費(fèi).另收200元的制版費(fèi),乙印刷廠收費(fèi)y(元)與印刷頁數(shù)x(頁)的函數(shù)關(guān)系為 ;
(3)在給出的坐標(biāo)系內(nèi)畫出(2)中的函數(shù)圖象,并結(jié)合函數(shù)圖象回答印刷頁數(shù)在3000頁左右應(yīng)選擇哪個印刷店?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com