如果點(diǎn)A(﹣1,2)在一個(gè)正比例函數(shù)y=f(x)的圖象上,那么y隨著x的增大而 (填“增大”或“減小”).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
我們常見的炒菜鍋和鍋蓋都是拋物線面,經(jīng)過鍋心和蓋心的縱斷面是兩端拋物線組合而成的封閉圖形,不妨簡(jiǎn)稱為“鍋線”,鍋口直徑為6dm,鍋深3dm,鍋蓋高1dm(鍋口直徑與鍋蓋直徑視為相同),建立直接坐標(biāo)系如圖①所示,如果把鍋縱斷面的拋物線的記為C1,把鍋蓋縱斷面的拋物線記為C2.
(1)求C1和C2的解析式;
(2)如圖②,過點(diǎn)B作直線BE:y=x﹣1交C1于點(diǎn)E(﹣2,﹣),連接OE、BC,在x軸上求一點(diǎn)P,使以點(diǎn)P、B、C為頂點(diǎn)的△PBC與△BOE相似,求出P點(diǎn)的坐標(biāo);
(3)如果(2)中的直線BE保持不變,拋物線C1或C2上是否存在一點(diǎn)Q,使得△EBQ的面積最大?若存在,求出Q的坐標(biāo)和△EBQ面積的最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知拋物線與x軸交于點(diǎn)A(﹣2,0),B(4,0),與y軸交于點(diǎn)C(0,8).
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交x軸于點(diǎn)E.在線段OB的垂直平分線上是否存在點(diǎn)P,使得點(diǎn)P到直線CD的距離等于點(diǎn)P到原點(diǎn)O的距離?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由;
(3)過點(diǎn)B作x軸的垂線,交直線CD于點(diǎn)F,將拋物線沿其對(duì)稱軸平移,使拋物線與線段EF總有公共點(diǎn).試探究:拋物線向上最多可平移多少個(gè)單位長(zhǎng)度?向下最多可平移多少個(gè)單位長(zhǎng)度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如果點(diǎn)(﹣a,﹣b)在反比例函數(shù)y=的圖象上,那么下列五點(diǎn)(a,b)、(b,a)、(b,﹣a)、(﹣a,b)、(﹣b,a)中,在此圖象上的點(diǎn)有 個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如果點(diǎn)A(﹣1,y1)、B(1,y2)、C(,y3)是反比例函數(shù)圖象上的三個(gè)點(diǎn),則下列結(jié)論正確的是( 。
| A. | y1>y2>y3 | B. | y3>y2>y1 | C. | y2>y1>y3 | D. | y3>y1>y2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com