已知關于x的方程x2-(m+2)x+(2m-1)=0.
(1)求證:方程恒有兩個不相等的實數(shù)根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長.
【答案】分析:(1)根據(jù)關于x的方程x2-(m+2)x+(2m-1)=0的根的判別式的符號來證明結論;
(2)根據(jù)一元二次方程的解的定義求得m值,然后由根與系數(shù)的關系求得方程的另一根.分類討論:①當該直角三角形的兩直角邊是2、3時,由勾股定理得斜邊的長度為:;②當該直角三角形的直角邊和斜邊分別是2、3時,由勾股定理得該直角三角形的另一直角邊為;再根據(jù)三角形的周長公式進行計算.
解答:(1)證明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,
∴在實數(shù)范圍內(nèi),m無論取何值,(m-2)2+4>0,即△>0,
∴關于x的方程x2-(m+2)x+(2m-1)=0恒有兩個不相等的實數(shù)根;

(2)解:根據(jù)題意,得
12-1×(m+2)+(2m-1)=0,
解得,m=2,
則方程的另一根為:m+2-1=2+1=3;
①當該直角三角形的兩直角邊是1、3時,由勾股定理得斜邊的長度為:;
該直角三角形的周長為1+3+=4+;
②當該直角三角形的直角邊和斜邊分別是1、3時,由勾股定理得該直角三角形的另一直角邊為2;則該直角三角形的周長為1+3+2=4+2
點評:本題綜合考查了勾股定理、根的判別式、一元二次方程解的定義.解答(2)時,采用了“分類討論”的數(shù)學思想.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、已知關于x的方程x2+kx+1=0和x2-x-k=0有一個根相同,則k的值為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•綿陽)已知關于x的方程x2-(m+2)x+(2m-1)=0.
(1)求證:方程恒有兩個不相等的實數(shù)根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•西城區(qū)二模)已知關于x的方程x2+3x=8-m有兩個不相等的實數(shù)根.
(1)求m的最大整數(shù)是多少?
(2)將(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的方程x2-2(k+1)x+k2=0有兩個實數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的方程x2-(3k+1)x+2k2+2k=0
(1)求證:無論k取何實數(shù)值,方程總有實數(shù)根.
(2)若等腰△ABC的一邊長為a=6,另兩邊長b,c恰好是這個方程的兩個根,求此三角形的周長.

查看答案和解析>>

同步練習冊答案