如圖,在四邊形ABCD中,AB=CD,BF=DE,AEBDCFBD,垂足分別為E,F

1)求證:△ABE≌△CDF;

2)若ACBD交于點(diǎn)O,求證:AO=CO

 

【答案】

1)證明見解析;(2)證明見解析.

【解析】

試題分析:(1)由BF=DE,可得BE=DF,由AEBD,CFBD,可得∠AEB=CFD=90°,又由AB=CD,在直角三角形中利用HL即可證得:△ABE≌△CDF;

2)由△ABE≌△CDF,即可得∠ABE=CDF,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,即可得ABCD,又由AB=CD,根據(jù)有一組對(duì)邊平行且相等的四邊形是平行四邊形,即即可證得四邊形ABCD是平行四邊形,則可得AO=CO

試題解析:(1)∵BF=DE,

BF-EF=DE-EF,

BE=DF

AEBD,CFBD

∴∠AEB=CFD=90°,

AB=CD

RtABERtCDFHL);

2)連接AC,如圖:

∵△ABE≌△CDF,

∴∠ABE=CDF

ABCD,

AB=CD,

∴四邊形ABCD是平行四邊形,

AO=CO

考點(diǎn): 1.平行四邊形的判定與性質(zhì);2.全等三角形的判定與性質(zhì).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案