【題目】如圖,在△ABC中,點(diǎn)O是AC邊上(端點(diǎn)除外)的一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線MN∥BC.設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F,連接AE、AF.
(1)求證:OE=OF;
(2)那么當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),試判斷四邊形AECF的形狀并說(shuō)明理由;
(3)在(2)的前提下△ABC滿足什么條件,四邊形AECF是正方形?說(shuō)明理由.
【答案】(1)證明見解析;(2)四邊形AECF是矩形;(3)四邊形AECF是正方形.
【解析】
(1)由平行線的性質(zhì)和角平分線的性質(zhì),推出∠ECB=∠CEO,∠GCF=∠CFO,∠ECB=∠ECO,∠GCF=∠OCF,通過等量代換即可推出∠CEO=∠ECO,∠CFO=∠OCF,便可確定OC=OE,OC=OF,可得OE=OF;
(2)當(dāng)O點(diǎn)運(yùn)動(dòng)到AC的中點(diǎn)時(shí),四邊形AECF為矩形,根據(jù)矩形的判定定理(對(duì)角線相等且互相平分的四邊形為矩形),結(jié)合(1)所推出的結(jié)論,即可推出OA=OC=OE=OF,求出AC=EF后,即可確定四邊形AECF為矩形;
(3)當(dāng)△ABC是直角三角形時(shí),四邊形AECF是正方形,根據(jù)(2)所推出的結(jié)論,由AC⊥BC,MN∥BC,確定AC⊥EF,即可推出結(jié)論.
證明:(1)
如圖:
∵MN∥BC,
∴∠OEC=∠BCE,∠OFC=∠GCF,
∵CE平分∠BCO,CF平分∠GCO,
∴∠OCE=∠BCE,∠OCF=∠GCF,
∴∠OCE=∠OEC,∠OCF=∠OFC,
∴EO=CO,FO=CO,
∴EO=FO.
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),四邊形AECF是矩形.
∵當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),AO=CO,
∵EO=FO,
∴四邊形AECF是平行四邊形,
∵FO=CO,
∴AO=CO=EO=FO,
∴AO+CO=EO+FO,即AC=EF,
∴四邊形AECF是矩形.
(3)當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),且△ABC滿足∠ACB為直角的直角三角形時(shí),四邊形AECF是正方形.
∵由(2)知,當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),四邊形AECF是矩形,
∵MN∥BC,當(dāng)∠ACB=90°,
∴∠AOF=∠COE=∠COF=∠AOE=90°,
∴AC⊥EF,
∴四邊形AECF是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,A(a,0),C(0,c)且滿足:,長(zhǎng)方形ABCO在坐標(biāo)系中(如圖1),點(diǎn)O為坐標(biāo)系的原點(diǎn).
(1)求點(diǎn)B的坐標(biāo).
(2)如圖2,若點(diǎn)M從點(diǎn)A出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng)(不超過點(diǎn)O),點(diǎn)N從原點(diǎn)O出發(fā),以1個(gè)單位/秒的速度向下運(yùn)動(dòng)(不超過點(diǎn)C),設(shè)M、N兩點(diǎn)同時(shí)出發(fā),在它們運(yùn)動(dòng)的過程中,四邊形MBNO的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍.
(3)如圖3,E為x軸負(fù)半軸上一點(diǎn),且∠CBE=∠CEB,F是x軸正半軸上一動(dòng)點(diǎn),∠ECF的平分線CD交BE的延長(zhǎng)線于點(diǎn)D,在點(diǎn)F運(yùn)動(dòng)的過程中,請(qǐng)?zhí)骄俊?/span>CFE與∠D的數(shù)量關(guān)系,并說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰直角三角形ABC,AB=BC,直角頂點(diǎn)B在直線PQ上,且AD⊥PQ于D,CE⊥PQ于E.
(1)△ADB與△BEC全等嗎?為什么?
(2)圖1中,AD、DE、CE有怎樣的等量關(guān)系?說(shuō)明理由.
(3)將直線PQ繞點(diǎn)B旋轉(zhuǎn)到如圖2所示的位置,其他條件不變,那么AD、DE、CE有怎樣的等量關(guān)系?直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,作△OAB,其中三個(gè)頂點(diǎn)分別是O(0,0),B(1,1),A(x,y)(-2≤x≤2,-2≤y≤2,x,y均為整數(shù)),則所作△OAB為直角三角形的概率是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩人玩“石頭、剪刀、布”的游戲,他們?cè)诓煌该鞯拇又蟹湃胄螤,大小均相同?/span>15張卡片,其中寫有“石頭”、“剪刀”、“布”的卡片數(shù)分別為3、5、7張,兩人各隨機(jī)摸出一張卡片(先摸者不放回)來(lái)比勝負(fù),并約定“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,同種卡片不分勝負(fù).
(1)若甲先摸,則他摸出“石頭”的概率是多少?
(2)若甲先摸出“石頭”,則乙獲勝的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P為正方形ABCD的邊BC上一動(dòng)點(diǎn)(P與B、C不重合),連接AP,過點(diǎn)B作BQ⊥AP交CD于點(diǎn)Q,將△BQC沿BQ所在的直線對(duì)折得到△BQC′,延長(zhǎng)QC′交BA的延長(zhǎng)線于點(diǎn)M.
(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當(dāng)AB=3,BP=2PC,求QM的長(zhǎng);
(3)當(dāng)BP=m,PC=n時(shí),求AM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的兩個(gè)外角∠CBE,∠CDF的平分線交于點(diǎn)G,若∠A=52°,∠DGB=28°,則∠DCB的度數(shù)是( 。
A. 152°B. 128°C. 108°D. 80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形邊長(zhǎng)為1的方格紙中,△ABC的頂點(diǎn)都在方格紙格點(diǎn)上。
(1)將△ABC經(jīng)過平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B′,補(bǔ)全△A′B′C′;
(2)若連接AA′、BB′,則這兩條線段之間的關(guān)系是________________;
(3)在圖中畫出△ABC的高CD;
(4)△A′B′C′的面積為________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸相交于點(diǎn),與直線相交于點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)請(qǐng)判斷的形狀并說(shuō)明理由;
(3)動(dòng)點(diǎn)從原點(diǎn)出發(fā),以每秒個(gè)單位的速度沿著的路線向點(diǎn)勻速運(yùn)動(dòng)(不與點(diǎn)、重合),過點(diǎn)分別作軸于,軸于,設(shè)運(yùn)動(dòng)秒時(shí),矩形與重疊部分的面積為,求與之間的函數(shù)關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com