天貓商城旗艦店銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%.
(1)設該旗艦店每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?
(3)如果旗艦店想要每月獲得的利潤不低于2000元,那么每月的成本最少需要     元?
(成本=進價×銷售量)

(1)w=-10x2+700x-10000(20≤x≤32);(2)當銷售單價定為32元時,每月可獲得最大利潤,最大利潤是2160元;(3)3600.

解析試題分析:(1)由題意得,每月銷售量與銷售單價之間的關(guān)系可近似看作一次函數(shù),利潤=(定價-進價)×銷售量,從而列出關(guān)系式;
(2)首先確定二次函數(shù)的對稱軸,然后根據(jù)其增減性確定最大利潤即可;
(3)根據(jù)拋物線的性質(zhì)和圖象,求出每月的成本.
試題解析:(1)由題意,得:w=(x-20)•y=(x-20)•(-10x+500)=-10x2+700x-10000,
即w=-10x2+700x-10000(20≤x≤32).
(2)對于函數(shù)w=-10x2+700x-10000的圖象的對稱軸是直線
又∵a=-10<0,拋物線開口向下.∴當20≤x≤32時,W隨著X的增大而增大.
∴當x=32時,W=2160.
答:當銷售單價定為32元時,每月可獲得最大利潤,最大利潤是2160元.
(3)取W=2000得,-10x2+700x-10000=2000
解這個方程得:x1=30,x2=40.
∵a=-10<0,拋物線開口向下.
∴當30≤x≤40時,w≥2000.
∵20≤x≤32,∴當30≤x≤32時,w≥2000.
設每月的成本為P(元),由題意,得:P=20(-10x+500)=-200x+10000,
∵k=-200<0,∴P隨x的增大而減小.
∴當x=32時,P的值最小,P最小值=3600.
答:想要每月獲得的利潤不低于2000元,小明每月的成本最少為3600元.
考點:二次函數(shù)的應用.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

寧波元康水果市場某批發(fā)商經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價一元,日銷售量將減少20千克.
(1)現(xiàn)要保證每天盈利6000元,同時又要讓顧客得到實惠,那么每千克應漲價多少元?
(2)若該批發(fā)商單純從經(jīng)濟角度看,那么每千克應漲價多少元,能使商場獲利最多.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在△ABC中,AB=AC=4cm,∠BAC=90°.動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是1cm/s,當點P到達點B時,P、Q兩點停止運動.設點P的運動時間為ts,四邊形APQC的面積為ycm2

(1)當t為何值時,△PBQ是直角三角形?
(2)①求y與t的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當t為何值時,y取得最小值?最小值為多少?
(3)設PQ的長為xcm,試求y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,拋物線與x軸交于A(1,0)、B(-4,0)兩點,交y軸與C點.

(1)求該拋物線的解析式.
(2)在該拋物線位于第二象限的部分上是否存在點D,使得△DBC的面積S最大?若存在,求出點D的坐標;若不存在,請說明理由.
(3)設拋物線的頂點為點F,連接線段CF,連接直線BC,請問能否在直線BC上找到一個點M,在拋物線上找到一個點N,使得C、F、M、N四點組成的四邊形為平行四邊形,若存在,請寫出點M和點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點,與y軸交于點C,x1,x2是方程x2+4x﹣5=0的兩根.
(1)若拋物線的頂點為D,求S△ABC:S△ACD的值;
(2)若∠ADC=90°,求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知二次函數(shù)y=a(x-m)2-2a(x-m)(a,m為常數(shù),且a≠0).
(1)求證:不論a與m為何值,該函數(shù)的圖象與x軸總有兩個公共點;
(2)設該函數(shù)的圖象的頂點為C,與x軸交于A,B兩點,當△ABC是等腰直角三角形時,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知二次函數(shù)圖像與y軸交于點(0,-4),并經(jīng)過(-1,-6)和(1,2)
(1)求這個二次函數(shù)的解析式;
(2)求出這個函數(shù)的圖像的開口方向,對稱軸和頂點坐標;
(3)該函數(shù)圖像與x軸的交點坐標                         .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在2014年“元旦”前夕,某商場試銷一種成本為30元的文化衫,經(jīng)試銷發(fā)現(xiàn),若每件按34元的價格銷售,每天能賣出36件;若每件按39元的價格銷售,每天能賣出21件.假定每天銷售件數(shù)y(件)是銷售價格x(元)的一次函數(shù).
(1)直接寫出y與x之間的函數(shù)關(guān)系式y(tǒng)=                      
(2)在不積壓且不考慮其他因素的情況下,每件的銷售價格定為多少元時,才能使每天獲得的利潤P最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:二次函數(shù)y=x2-4x+3.
(1)將y=x2-4x+3化成的形式;
(2)求出該二次函數(shù)圖象的對稱軸和頂點坐標;
(3)當x取何值時,y<0.

查看答案和解析>>

同步練習冊答案