如圖,多邊形OABCDE在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A和點(diǎn)E分別在y軸和x軸上,其中AB∥CD∥x軸,DE∥BC∥y軸,已知點(diǎn)B(4,6),點(diǎn)D(6,4),若直線l經(jīng)過(guò)點(diǎn)M(2,3),且將多邊形OABCDE分割成面積相等的兩部分,則直線l的函數(shù)表達(dá)式是   
【答案】分析:設(shè)直線1為:y=kx+b.根據(jù)A、B、C、D、E坐標(biāo)可先求出多邊形面積,然后用k,b表示梯形的面積,由梯形面積是多邊形面積的一半,再代入M的坐標(biāo),求出k,b.
解答:解:如圖所示,設(shè)直線1函數(shù)表達(dá)式為:y=kx+b.其中,點(diǎn)A和點(diǎn)E分別在y軸和x軸上,其中AB∥CD∥x軸,DE∥BC∥y軸,已知點(diǎn)B(4,6),點(diǎn)D(6,4),所以A(0,6),C(4,4),E(6,0).
直線1與多邊形交點(diǎn)坐標(biāo)為:G(0,b),H(6,6k+b).
多邊形ABCDEO面積:S=8+16+8=32.
梯形HEOG面積為:m=6(3k+b)=0.5S=16.
將M(2,3)代入直線1:3=2k+b.
列出方程組:
解得:
所以直線1的方程表達(dá)式為:
點(diǎn)評(píng):本題可以看成一個(gè)二元一次方程組,關(guān)鍵要找好等量關(guān)系,同時(shí)還應(yīng)注意梯形面積的求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4cm,OC=3cm,D為OA上一動(dòng)點(diǎn),點(diǎn)D以1cm/s的速度從O點(diǎn)出發(fā)向精英家教網(wǎng)A點(diǎn)運(yùn)動(dòng),E為AB上一動(dòng)點(diǎn),點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā)向點(diǎn)B運(yùn)動(dòng).
(1)試寫(xiě)出多邊形ODEBC的面積S(cm2)與運(yùn)動(dòng)時(shí)間t(s)之間的函數(shù)關(guān)系式;
(2)在(1)的條件下,當(dāng)多邊形ODEBC的面積最小時(shí),在坐標(biāo)軸上是否存在點(diǎn)P,使得△PDE為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在某一時(shí)刻將△BED沿著B(niǎo)D翻折,使得點(diǎn)E恰好落在BC邊的點(diǎn)F處.求出此時(shí)時(shí)間t的值.若此時(shí)在x軸上存在一點(diǎn)M,在y軸上存在一點(diǎn)N,使得四邊形MNFE的周長(zhǎng)最小,試求出此時(shí)點(diǎn)M,點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4cm,OC=3cm,D為OA上一動(dòng)點(diǎn),點(diǎn)D以1cm/s的速度從O點(diǎn)出發(fā)向A點(diǎn)運(yùn)動(dòng),E為AB上一動(dòng)點(diǎn),點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā)向點(diǎn)B運(yùn)動(dòng).
(1)試寫(xiě)出多邊形ODEBC的面積S(cm2)與運(yùn)動(dòng)時(shí)間t(s)之間的函數(shù)關(guān)系式;
(2)在(1)的條件下,當(dāng)多邊形ODEBC的面積最小時(shí),在坐標(biāo)軸上是否存在點(diǎn)P,使得△PDE為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在某一時(shí)刻將△BED沿著B(niǎo)D翻折,使得點(diǎn)E恰好落在BC邊的點(diǎn)F處.求出此時(shí)時(shí)間t的值.若此時(shí)在x軸上存在一點(diǎn)M,在y軸上存在一點(diǎn)N,使得四邊形MNFE的周長(zhǎng)最小,試求出此時(shí)點(diǎn)M,點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年重慶市一中中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4cm,OC=3cm,D為OA上一動(dòng)點(diǎn),點(diǎn)D以1cm/s的速度從O點(diǎn)出發(fā)向A點(diǎn)運(yùn)動(dòng),E為AB上一動(dòng)點(diǎn),點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā)向點(diǎn)B運(yùn)動(dòng).
(1)試寫(xiě)出多邊形ODEBC的面積S(cm2)與運(yùn)動(dòng)時(shí)間t(s)之間的函數(shù)關(guān)系式;
(2)在(1)的條件下,當(dāng)多邊形ODEBC的面積最小時(shí),在坐標(biāo)軸上是否存在點(diǎn)P,使得△PDE為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在某一時(shí)刻將△BED沿著B(niǎo)D翻折,使得點(diǎn)E恰好落在BC邊的點(diǎn)F處.求出此時(shí)時(shí)間t的值.若此時(shí)在x軸上存在一點(diǎn)M,在y軸上存在一點(diǎn)N,使得四邊形MNFE的周長(zhǎng)最小,試求出此時(shí)點(diǎn)M,點(diǎn)N的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案