【題目】如圖,正方形ABCD的邊長為8,在各邊上順次截取AE=BF=CG=DH=5,則四邊形EFGH的面積是(
A.30
B.34
C.36
D.40

【答案】B
【解析】解:∵四邊形ABCD是正方形, ∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,
∵AE=BF=CG=DH,
∴AH=BE=CF=DG.
在△AEH、△BFE、△CGF和△DHG中,
,
∴△AEH≌△BFE≌△CGF≌△DHG(SAS),
∴EH=FE=GF=GH,∠AEH=∠BFE,
∴四邊形EFGH是菱形,
∵∠BEF+∠BFE=90°,
∴∠BEF+∠AEH=90°,
∴∠HEF=90°,
∴四邊形EFGH是正方形,
∵AB=BC=CD=DA=8,AE=BF=CG=DH=5,
∴EH=FE=GF=GH= = ,
∴四邊形EFGH的面積是: × =34,
故選B.
由正方形的性質得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,證出AH=BE=CF=DG,由SAS證明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH,∠AEH=∠BFE,證出四邊形EFGH是菱形,再證出∠HEF=90°,即可得出四邊形EFGH是正方形,由邊長為8,AE=BF=CG=DH=5,可得AH=3,由勾股定理得EH,得正方形EFGH的面積.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖①,BP、CP分別平分△ABC的外角∠CBD、∠BCE,BQ、CQ分別平分∠PBC、∠PCB,BM、CN分別是∠PBD、∠PCE的角平分線.

(1)∠BAC=40°時,∠BPC=   ,∠BQC=   ;

(2)BM∥CN時,求∠BAC的度數(shù);

(3)如圖,當∠BAC=120°時,BM、CN所在直線交于點O,直接寫出∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中BC=8,CD=6,將△ABE沿BE折疊,使點A恰好落在對角線BD上F處,則DE的長是(
A.3
B.
C.5
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】端午節(jié)放假期間,小明和小華準備到宜賓的蜀南竹海(記為A)、興文石海(記為B)、夕佳山民居(記為C)、李莊古鎮(zhèn)(記為D)的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點都被選中的可能性相同.
(1)小明選擇去蜀南竹海旅游的概率為
(2)用樹狀圖或列表的方法求小明和小華都選擇去興文石海旅游的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道:任意一個有理數(shù)與無理數(shù)的和為無理數(shù),任意一個不為零的有理數(shù)與一個無理數(shù)的積為無理數(shù),而零與無理數(shù)的積為零.由此可得:如果ax+b=0,其中a、b為有理數(shù),x為無理數(shù),那么a=0且b=0.

運用上述知識,解決下列問題:

(1)如果a-2+b+3=0,其中a、b為有理數(shù),那么a= ,b=

(2)如果2+a-1-b=5,其中a、b為有理數(shù),求a+2b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請從以下兩個小題中任選一個作答,若多選,則按第一題計分.
A.一個八邊形的外角和是°.
B.計劃在樓層間修建一個坡角為35°的樓梯,若樓層間高度為2.7m,為了節(jié)省成本,現(xiàn)要將樓梯坡角增加11°,則樓梯的斜面長度約減少 m.(用科學計算器計算,結果精確到0.01m)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了綠化環(huán)境育英中學八年級三班同學都積極參加植樹活動,今年植樹節(jié)時,該班同學植樹情況的部分數(shù)據(jù)如圖所示,請根據(jù)統(tǒng)計圖信息,回答下列問題

1)八年級三班共有多少名同學?

2)條形統(tǒng)計圖中,m=   n=   

3)扇形統(tǒng)計圖中,試計算植樹2棵的人數(shù)所對應的扇形圓心角的度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線相交于點O,過點O的任意一條直線與邊AD相交于點E,與邊BC相交于點F,求證:OE=OF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,E是AB的中點,連接CE并延長交AD于F.

(1)求證:△AEF≌△BEC;

(2)判斷四邊形BCFD是何特殊四邊形,并說出理由;

(3)如圖2,將四邊形ACBD折疊,使D與C重合,HK為折痕,若BC=1,求AH的長.

查看答案和解析>>

同步練習冊答案