如圖所示,用正五邊形的地磚進(jìn)行鑲嵌,陰影處是什么圖形?它的每個(gè)內(nèi)角是多少度?

答案:
解析:

菱形;


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

小趙對蕪湖科技館富有創(chuàng)意的科學(xué)方舟形象設(shè)計(jì)很有興趣,他回家后將一正五邊形紙片沿其對稱軸對折.旋轉(zhuǎn)放置,做成科學(xué)方舟模型.如圖所示,該正五邊形的邊心距OB長為
2
,AC為科學(xué)方舟船頭A到船底的距離,請你計(jì)算AC+
1
2
AB=
 
.(不能用三角函數(shù)表達(dá)式表示)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

朝暉初中的科技活動(dòng)搞得有聲有色.某班的小趙對跨湖橋博物館富有創(chuàng)意的獨(dú)木舟形象設(shè)計(jì)很有興趣,他回家后將一正五邊形紙片沿其對稱軸對折.旋轉(zhuǎn)放置,做成獨(dú)木舟模型.如圖所示,該正五邊形ABCDE中,O為中心,延長AO交CD于點(diǎn)M.若OM長為
6
,AN為獨(dú)木舟船頭A到船底的距離,為了計(jì)算AN+
1
2
AM
的值,小趙所在的科技小組進(jìn)行了熱烈的討論:
小王:AM顯然是此正五邊形的對稱軸.
小李:AN與AM似乎無法直接求出,應(yīng)該用整體思想來求AN+
1
2
AM
的值.
小朱:注意到AM⊥CM,AN⊥BC,則AM與AN可看成是三角形的高,能否利用面積法來求呢?
小楊:若將點(diǎn)O與正五邊形的各頂點(diǎn)連接,則將此正五邊形的面積五等分…精英家教網(wǎng)
在這些同學(xué)的提示下,小趙求出了AN+
1
2
AM
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年初中畢業(yè)升學(xué)考試(安徽蕪湖卷)數(shù)學(xué)(解析版) 題型:填空題

小趙對蕪湖科技館富有創(chuàng)意的科學(xué)方舟形象設(shè)計(jì)很有興趣,他回家后將一正五邊形紙片沿其對稱軸對折.旋轉(zhuǎn)放置,做成科學(xué)方舟模型.如圖所示,該正五邊形的邊心距長為,為科學(xué)方舟船頭到船底的距離,請你計(jì)算         .(不能用三角函數(shù)表達(dá)式表示)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第3章《圓》中考題集(62):3.6 圓和圓的位置關(guān)系(解析版) 題型:填空題

小趙對蕪湖科技館富有創(chuàng)意的科學(xué)方舟形象設(shè)計(jì)很有興趣,他回家后將一正五邊形紙片沿其對稱軸對折.旋轉(zhuǎn)放置,做成科學(xué)方舟模型.如圖所示,該正五邊形的邊心距OB長為,AC為科學(xué)方舟船頭A到船底的距離,請你計(jì)算AC+AB=    .(不能用三角函數(shù)表達(dá)式表示)

查看答案和解析>>

同步練習(xí)冊答案