精英家教網 > 初中數學 > 題目詳情
(2008•雙柏縣)下列運算正確的是( )
A.x5+x5=x10
B.x5•x5=x10
C.(x55=x10
D.x20÷x2=x10
【答案】分析:根據合并同類項法則,同底數冪相乘,底數不變指數相加;冪的乘方,底數不變指數相乘;同底數冪相除,底數不變指數相減,對各選項分析判斷后利用排除法求解.
解答:解:A、應為x5+x5=2x5,故本選項錯誤;
B、x5•x5=x10,正確;
C、應為(x55=x5×5=x25,故本選項錯誤;
D、應為x20÷x2=x20-2=x18,故本選項錯誤.
故選B.
點評:本題考查合并同類項、同底數冪的乘法、冪的乘方、同底數冪的除法,熟練掌握運算性質和法則是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源:2011年山東省中考數學模擬試卷(四)(解析版) 題型:解答題

(2008•雙柏縣)已知拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且拋物線的對稱軸是直線x=-2.
(1)求A、B、C三點的坐標;
(2)求此拋物線的表達式;
(3)連接AC、BC,若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設AE的長為m,△CEF的面積為S,求S與m之間的函數關系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2011年甘肅省蘭州市中考數學模擬試卷(四)(解析版) 題型:解答題

(2008•雙柏縣)已知拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且拋物線的對稱軸是直線x=-2.
(1)求A、B、C三點的坐標;
(2)求此拋物線的表達式;
(3)連接AC、BC,若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設AE的長為m,△CEF的面積為S,求S與m之間的函數關系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2011年甘肅省蘭州市中考數學模擬試卷(四)(解析版) 題型:選擇題

(2008•雙柏縣)已知甲、乙兩地相距s(km),汽車從甲地勻速行駛到乙地,則汽車行駛的時間t(h)與行駛速度v(km/h)的函數關系圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源:2010年江蘇省南京市六合區(qū)中考數學一模試卷(解析版) 題型:解答題

(2008•雙柏縣)已知拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且拋物線的對稱軸是直線x=-2.
(1)求A、B、C三點的坐標;
(2)求此拋物線的表達式;
(3)連接AC、BC,若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設AE的長為m,△CEF的面積為S,求S與m之間的函數關系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2008年云南省楚雄州雙柏縣中考數學試卷(解析版) 題型:選擇題

(2008•雙柏縣)已知甲、乙兩地相距s(km),汽車從甲地勻速行駛到乙地,則汽車行駛的時間t(h)與行駛速度v(km/h)的函數關系圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案