已知:正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CB,DC(或它們的延長(zhǎng)線)于點(diǎn)M,N.
(1)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時(shí)(如圖1),求證:BM+DN=MN;
(2)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN時(shí)(如圖2),則線段BM,DN和MN之間數(shù)量關(guān)系是______;
(3)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到如圖3的位置時(shí),猜想線段BM,DN和MN之間又有怎樣的數(shù)量關(guān)系呢?并對(duì)你的猜想加以說明.

【答案】分析:(1)延長(zhǎng)CB到E,使BE=DN,連接AE,根據(jù)SAS證△ABE≌△ADN,推出AE=AN,∠DAN=∠BAE,求出∠NAM=∠MAE,根據(jù)SAS證出△NAM≌△EAM即可;
(2)證法與(1)類似,延長(zhǎng)CB到E,使BE=DN,連接AE,根據(jù)SAS證△ABE≌△ADN,推出AE=AN,∠DAN=∠BAE,求出∠NAM=∠MAE,根據(jù)SAS證出△NAM≌△EAM即可;
(3)在CD上截取DE=BM,連接AE,根據(jù)SAS證△ADE≌△ABM,推出AE=AM,∠DAE=∠MAB,求出∠EAN=∠MAN,根據(jù)SAS證出△MAN≌△EAN即可.
解答:(1)證明:如圖1,延長(zhǎng)CB至E使得BE=DN,連接AE,
∵四邊形ABCD是正方形,
∴AB=AD,∠D=∠ABC=90°=∠ABE,
在△ADN和△ABE中

△ABE≌△ADN(SAS),
∴∠BAE=∠DAN,AE=AN,
∴∠EAN=∠BAE+∠BAN=∠DAN+∠BAN=90°,
∵∠MAN=45°,
∴∠EAM=∠MAN,
∵在△EAM和△NAM中
,
∴△EAM≌△NAM,
∴MN=ME,
∵M(jìn)E=BM+BE=BM+DN,
∴BM+DN=MN;

(2)解:線段BM,DN和MN之間數(shù)量關(guān)系是BM+DN=MN,理由如下:
延長(zhǎng)CB至E,使得BE=DN,連接AE,
∵四邊形ABCD是正方形,
∴AB=AD,∠D=∠ABC=90°=∠ABE,
在△ADN和△ABE中,
,
∴△ABE≌△ADN(SAS),
∴∠BAE=∠DAN,AE=AN,
∴∠EAN=∠BAE+∠BAN=∠DAN+∠BAN=90°,
∵∠MAN=45°,
∴∠EAM=∠MAN,
∵在△EAM和△NAM中
,
∴△EAM≌△NAM,
∴MN=ME,
∵M(jìn)E=BM+BE=BM+DN,
∴BM+DN=MN,
故答案為:BM+DN=MN;

(3)DN-BM=MN,理由如下:
如圖3,在DC上截取DE=BM,連接AE,
由(1)知△ADE≌△ABM(SAS),
∴∠DAE=∠BAM,AE=AM,
∴∠EAM=∠BAM+∠BAE=∠DAE+∠BAE=90°,
∵∠MAN=45°,
∴∠EAN=∠MAN.
∵在△MAN和△EAN中,
,
∴△MAN≌△EAN(SAS),
∴EN=MN,
即DN-DE=MN,
∴DN-BM=MN.
點(diǎn)評(píng):本題考查了正方形的性質(zhì),全等三角形的性質(zhì)和判定,此題比較典型,具有一定的代表性,且證明過程類似,同時(shí)通過做此題培養(yǎng)了學(xué)生的猜想能力和類比推理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:正方形ABCD邊長(zhǎng)為1,E、F、G、H分別為各邊上的點(diǎn),且AE=BF=CG=DH,設(shè)小正方形EFGH的面積為s,AE為x,則s關(guān)于x的函數(shù)圖象大致是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、(1)如圖,已知在正方形ABCD中,M是AB的中點(diǎn),E是AB延長(zhǎng)線上一點(diǎn),MN⊥DM且交∠CBE的平分線于N.試判定線段MD與MN的大小關(guān)系;
(2)若將上述條件中的“M是AB的中點(diǎn)”改為“M是AB上或AB延長(zhǎng)線上任意一點(diǎn)”,其余條件不變.試問(1)中的結(jié)論還成立嗎?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:正方形ABCD邊長(zhǎng)為4cm,E,F(xiàn)分別為CD,BC的中點(diǎn),動(dòng)點(diǎn)P在線段AB上從B?A以2cm/精英家教網(wǎng)s的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q在線段FC上從F?C以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)G在PC上,且∠EGC=∠EQC,連接PD.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求證:△CQE∽△APD;
(2)問:在運(yùn)動(dòng)過程中CG•CP的值是否發(fā)生改變?如果不變,請(qǐng)求這個(gè)值;若改變,請(qǐng)說明理由;
(3)當(dāng)t為何值時(shí),△CGE為等腰三角形并求出此時(shí)△CGE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,已知在正方形ABCD中,P是BC上的一點(diǎn),且AP=DP.求證:P是BC中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=
6
.下列結(jié)論:
①△APD≌△AEB﹔②點(diǎn)B到直線AE的距離為
3
﹔③EB⊥ED﹔④S△APD+S△APB=0.5+
2

其中正確結(jié)論的序號(hào)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案