【答案】
分析:(1)首先連接OE,由
,OD∥BF,易得∠OBE=∠OEB=∠BOE=60°,又由CF⊥AB,即可求得∠F的度數(shù);
(2)作OH⊥BE,垂足為H,易得△HBO≌△COD,即可得CO=BH=x,求得BE=2x,易得△COD∽△CBF,然后由相似三角形的對(duì)應(yīng)邊成比例,可得
,則可求得y與x之間的函數(shù)解析式;
(3)由∠COD=∠OBE,∠OBE=∠OEB,∠DOE=∠OEB,可得∠COD=∠DOE,即可得C關(guān)于直線OD的對(duì)稱點(diǎn)為P在線段OE上,然后分別從PB=PE,EB=EP,BE=BP去分析求解即可求得答案.
解答:解:(1)連接OE,-------------------------------------------------------(1分)
∵
=
,
∴∠BOE=∠EOD-------------------------------------------------------------------(1分)
∵OD∥BF,
∴∠DOE=∠BEO,
∵OB=OE,
∴∠OBE=∠OEB,-------------------------------------------------------------------(1分)
∴∠OBE=∠OEB=∠BOE=60°,---------------------------------------------------------------------(1分)
∵CF⊥AB,
∴∠FCB=90°,
∴∠F=30°;--------------------------------------------------------------------------(1分)
(2)作OH⊥BE,垂足為H,-----------------------------------------------------------------------------(1分)
∵在△HBO和△COD中,
,
∴△HBO≌△COD(AAS),-------------------------------------------------------------------------------------(1分)
∴CO=BH=x,
∴BE=2x,
∵OD∥BF,
∴△COD∽△CBF,
∴
,--------------------------------------------------------------------(1分)
∴
,
∴y=
(0<x<4);-------------------------(2分)
(3)∵∠COD=∠OBE,∠OBE=∠OEB,∠DOE=∠OEB,
∴∠COD=∠DOE,
∴C關(guān)于直線OD的對(duì)稱點(diǎn)為P在線段OE上,----------------(1分)
若△PBE為等腰三角形,
設(shè)CO=x,
∴OP=OC=x,
則PE=OE-OP=4-x,
由(2)得:BE=2x,
①當(dāng)PB=PE,不合題意舍去;--------------------------------------------------------------(1分)
②當(dāng)EB=EP,2x=4-x,
解得:x=
,---------------------------------------------------------(1分)
③當(dāng)BE=BP,作BM⊥OE,垂足為M,
∴EM=
PE=
,
∴∠OEB=∠COD,∠BME=∠DCO=90°,
∴△BEM∽△DOC,
∴
,
∴
,
整理得:x
2+x-4=0,
解得:x=
(負(fù)數(shù)舍去).----------------------------------(1分)
綜上所述:當(dāng)OC的長(zhǎng)為
或
時(shí),△PBE為等腰三角形.
點(diǎn)評(píng):此題考查了圓的性質(zhì)、等邊三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、全等三角形的判定與性質(zhì)以及相似三角形的判定與性質(zhì)等性質(zhì).此題綜合性較強(qiáng),難度較大,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想、分類討論思想與方程思想的應(yīng)用.