【題目】河南靈寶蘋果為中華蘋果之翹楚,被譽為“中華名果”.某水果超市計劃從靈寶購進“紅富士”與“新紅星”兩種品種的蘋果.已知2箱紅富士蘋果的進價與3箱新紅星蘋果的進價的和為282元,且每箱紅富士蘋果的進價比每箱新紅星蘋果的進價貴6元.

1)求每箱紅富士蘋果的進價與每箱新紅星蘋果的進價分別是多少元?

2)如果購進紅富士蘋果有優(yōu)惠,優(yōu)惠方案是:購進紅富士蘋果超過20箱,超出部分可以享受七折優(yōu)惠.若購進,且為整數(shù))箱紅富士蘋果需要花費元,求之間的函數(shù)關(guān)系式;

3)在(2)的條件下,超市決定在紅富士、新紅星兩種蘋果中選購其中一種,且數(shù)量超過20箱,請你幫助超市選擇購進哪種蘋果更省錢.

【答案】1)每箱紅富士蘋果的進價與每箱新紅星蘋果的進價分別是60元和54元;(2;(3)見詳解.

【解析】

1)設(shè)每箱新紅星蘋果的進價是x元,則每箱紅富士蘋果的進價為x+6元,然后列方程即可解答;

2)分別列出之間的函數(shù)關(guān)系式即可;

3)列出購進新紅星蘋果的花費,列不等式即可解決.

解:(1)設(shè)每箱新紅星蘋果的進價是x元,則每箱紅富士蘋果的進價為x+6元,

根據(jù)題意可列方程為

解得,

54+6=60

每箱紅富士蘋果的進價與每箱新紅星蘋果的進價分別是60元和54元;

2)當時,,

時,,

3)設(shè)購進蘋果為b箱,購進新紅星蘋果的花費為z元,

,

時,解得,即,此時購進新紅星蘋果更省,

時,解得,此時購進紅富士蘋果更省,

時,解得,此時購進兩種蘋果費用相同.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線與x軸交于點A,與雙曲線的一個交點為B(-1,4).

(1)求直線與雙曲線的表達式;

(2)過點B作BC⊥x軸于點C,若點P在雙曲線上,且△PAC的面積為4,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某社區(qū)調(diào)查社區(qū)居民雙休日的學習狀況,采取下列調(diào)查方式:①從一幢高層住宅樓中選取200名居民;②從不同住層樓中隨機選取200名居民;③選取社區(qū)內(nèi)的200名在校學生.

1)上述調(diào)查方式最合理的是   (填序號);

2)將最合理的調(diào)查方式得到的數(shù)據(jù)制成扇形統(tǒng)計圖(如圖①)和頻數(shù)分布直方圖(如圖②).

①請補全直方圖(直接畫在圖②中);

②在這次調(diào)查中,200名居民中,在家學習的有   人;

3)請估計該社區(qū)2000名居民中雙休日學習時間不少于4h的人數(shù);

4)小明的叔叔住在該社區(qū),那么雙休日他去叔叔家時,正好叔叔沒有學習的概率是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yx22mxm2m1m為常數(shù)).

1)求證:不論m為何值,該二次函數(shù)的圖像與x軸總有兩個公共點;

2)將該二次函數(shù)的圖像向下平移kk0)個單位長度,使得平移后的圖像經(jīng)過點(0,-2),則k的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的對角線,,的邊,的長是三個連續(xù)偶數(shù),分別是邊,上的動點,且,將沿著折疊得到,連接,.若為直角三角形時,的長為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】要求在下列問題中僅用無刻度的直尺作圖.如圖,在下列10×12的網(wǎng)格中, 橫、縱坐標均為整數(shù)的點叫做格點.例如正方形ABCD的頂點A(07),C(52)都是格點.

1找一個格點M, 連接AM交邊CDF,使DF=FC,畫出圖形寫出點M的坐標為

2找一個格點N, 連接ON交邊BCE,使BE=BC,畫出圖形寫出點N的坐標為 ;

3)連接AE、EFAEF.請按步驟完成作圖,并寫出AEF的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國北方又進入了火災(zāi)多發(fā)季節(jié),為此,某校在全校1200名學生中隨機抽取一部分人進行“安全防火,警鐘長鳴”知識問卷調(diào)查活動,對問卷調(diào)查成績按“很好”、“較好”、“一般”“較差”四類匯總分析,并繪制了如下扇形統(tǒng)計圖和條形統(tǒng)計圖.

1)本次活動共抽取了多少名同學?

2)補全條形統(tǒng)計圖;

3)根據(jù)以上調(diào)查結(jié)果分析,估計該校1200名學生中,對“安全防火”知識了解“較好”和“很好”的學生大約共計有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABx軸,y軸分別交于點A20),點B0,2),動點D1個單位長度/秒的速度從點A出發(fā)向x軸負半軸運動,同時動點E個單位長度/秒的速度從點B出發(fā)向y軸負半軸運動,設(shè)運動時間為t秒,以點A為頂點的拋物線經(jīng)過點E,過點Ex軸的平行線,與拋物線的另一個交點為點G,與AB相交于點F

1)求∠OAB度數(shù);

2)當t為何值時,四邊形ADEF為菱形,請求出此時二次函數(shù)解析式;

3)是否存在實數(shù)t,使△AGF為直角三角形?若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店經(jīng)銷一種學生用雙肩包,已知這種雙肩包的成本價為每個30元市場調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量(單位:個)與銷售單價(單位:元)有如下關(guān)系:.設(shè)這種雙肩包每天的銷售利潤為元.

1)求之間的函數(shù)關(guān)系式.

2)這種雙肩包的銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?

3)該商店銷售這種雙肩包每天要獲得200元的銷售利潤,根據(jù)薄利多銷的原則,銷售單價應(yīng)定為多少元?

查看答案和解析>>

同步練習冊答案