如圖,在平面直角坐標系中,頂點為(,)的拋物線交軸于點,交軸于兩點(點在點的左側(cè)). 已知點坐標為(,).

(1)求此拋物線的解析式;

(2)過點作線段的垂線交拋物線于點, 如果以點為圓心的圓與直線相切,請判斷拋物線的對稱軸與⊙有怎樣的位置關(guān)系,并給出證明;

(3)已知點是拋物線上的一個動點,且位于,兩點之間,問:當點運動到什么位置時,的面積最大?并求出此時點的坐標和的最大面積.

 


(1)解:設拋物線為.

∵拋物線經(jīng)過點(0,3),∴.∴.

∴拋物線為

 (2) 答:與⊙相交.

證明:當時,,.

            ∴為(2,0),為(6,0).∴.

設⊙相切于點,連接,則.

,∴.

又∵,∴.∴.

.∴.∴.

∵拋物線的對稱軸,∴點到的距離為2.

∴拋物線的對稱軸與⊙相交. 

(3) 解:如圖,過點作平行于軸的直線交于點.

可求出的解析式為.

點的坐標為(,),則點的坐標為(,).

           ∴.

           ∵,

           ∴當時,的面積最大為.

           此時,點的坐標為(3,).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習冊答案